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5 An Introduction to Itô Calculus

In this final Section, we introduce a further type of stochastic process known as an Itô pro-
cess. We have already met two such processes – Brownian motion and geometric Brownian
motion. Here, we will formulate such models as stochastic di↵erential equations (S.D.E.s)
and develop a framework for working with these processes.

5.1 The Itô Integral

Assume that stock price follows a G.B.M. with parameters µ and �
2. Suppose that we are

interested in the behaviour of stock price in the interval [t, t +�t]. Using the relationship
between G.B.M. and B.M., we can express the change in the logarithm of an assets price
as

log(St+�t)� log(St) = (µ� �
2
/2)�t+ �(Wt+�t �Wt)

where Wt is standard Brownian motion. Assuming zero volatility (i.e. �2 = 0) we have

log(St+�t)� log(St)

�t
= µ

) d log(St)

dt
= µ upon taking �t ! 0.

In other words, the change in the logarithm of an asset’s price is constant. Note that solving
the above ordinary di↵erential equation (ODE) system gives

St = S0e
µt

which we may have anticipated, since this is also the expectation of St when � is non zero.
What if we don’t assume zero volatility? Clearly,

log(St+�t)� log(St)

�t
= µ� �

2
/2 + �

Wt+�t �Wt

�t
.

We would like to take the limit (as �t ! 0) of both sides and write dWt/dt on the
RHS. However, although sample paths of Wt are continuous functions of t, they are almost
everywhere nondi↵erentiable. To see this, note the di↵erence quotient

Wt+�t �Wt

�t

is not bounded in the neighbourhood of t. Intuitively, the variance of the di↵erence quotient
explodes as�t ! 0. Consequently, dWt/dt has no meaning in the usual sense. In particular,
the Riemann integral Z t

0

g(⌧)
dW⌧

d⌧
d⌧

www.ncl.ac.uk/maths-physics/ 61



MAS3904: Stochastic Financial Modelling

has no meaning since dW⌧/d⌧ is not defined. Therefore, a new definition of a stochastic
integral is needed.

Let g(t) be a function of time, where t 2 [a, b]. We define the Itô stochastic integral for
functions g satisfying Z b

a

g
2(t) dt < 1 .

Definition 5.1 (Itô Stochastic Integral)

Partition [a, b] as a = t0 < t1 < . . . < tn�1 < tn = b and set �t = ti+1 � ti = (b � a)/n,
�Wti = Wti+1 �Wti . The Itô stochastic integral of g is defined as

Z b

a

g(t) dWt = l.i.m.n!1

n�1X

i=0

g(ti)�Wti ,

where l.i.m. denotes mean square convergence. In other words, if Gn =
Pn�1

i=0 g(ti)�Wti

and I =
R b

a g(t) dWt then l.i.m.n!1Gn = I means that

lim
n!1

E[(Gn � I)2] = 0 .

Simple Itô integrals

Simple Itô stochastic integrals can be verified directly from the Definition 5.1. For example
taking g(t) = 1 gives

Z b

a

dWt = l.i.m.n!1

n�1X

i=0

�Wti

= l.i.m.n!1(Wt1 �Wt0 +Wt2 �Wt1 + . . .+Wtn �Wtn�1)

= l.i.m.n!1(Wtn �Wt0)

= Wb �Wa .

where the last line follows since t0 = a and tn = b irrespective of the partition. Similarly,
taking a = 0 and b = t gives

Z t

0

dW⌧ = Wt �W0 = Wt

since W0 = 0 and we used ⌧ as a dummy variable for time since t is the upper limit of the
integral. Now take g(t) = k for some constant k to see that

Z t

0

kdW⌧ = k(Wt �W0) = kWt.
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Comments

• Solutions of Itô integrals are stochastic processes.

• Note that a general Itô stochastic integral of the form

Xt = X0 +

Z t

0

g(⌧)dW⌧

can be written in di↵erential form as

dXt = g(t)dWt .

This latter form is called the stochastic di↵erential representation of Xt. In the
following section we will generalise this construct.

5.2 Stochastic Di↵erential Equations (S.D.E.s)

Definition 5.2

A stochastic process Xt is said to satisfy an Itô stochastic di↵erential equation (S.D.E.), if
we may write

dXt = ↵(t,Xt) dt+ �(t,Xt) dWt .

Comments

• The corresponding integral representation is

Xt = X0 +

Z t

0

↵(⌧, X⌧ ) d⌧ +

Z t

0

�(⌧, X⌧ ) dW⌧ .

• Note that the first integral above is the usual Riemann integral and the second is an
Itô stochastic integral.

• The ↵ term is known as the drift coe�cient and �
2 as the di↵usion coe�cient.

• If ↵(t,Xt) and �(t,Xt) do not depend explicitly on t then the S.D.E. is said to be
time-homogeneous.
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Simple S.D.E.s

• Suppose that X0 = 0, ↵(t,Xt) = 0 and �(t,Xt) = 1. Then

dXt = dWt.

Integrating both sides of the above between 0 and t gives
Z t

0

dX⌧ =

Z t

0

dW⌧

) Xt �X0 = Wt �W0

for which we see that using X0 = 0 and W0 = 0 gives Xt = Wt, a standard Brownian
motion process.

• Take X0 = x0, ↵(t,Xt) = a and �(t,Xt) = b where x0, a and b are real numbers. The
resulting S.D.E. is

dXt = a dt+ b dWt .

Integrating both sides of the above between 0 and t gives
Z t

0

dX⌧ =

Z t

0

ad⌧ + b

Z t

0

dW⌧

) Xt �X0 = at+ b(Wt �W0)

for which we obtain
Xt = x0 + a t+ bWt

and we recognise Xt as a generalised Brownian motion process.

• We would like to be able to write down a S.D.E. for the stock price process St,
assuming it follows a geometric B.M. We know that St = exp(Xt) where Xt is a
generalised Brownian motion with initial condition log S0, drift µ��

2
/2 and di↵usion

coe�cient �2 and we know dXt. Hence, we just need a way of di↵erentiating exp(Xt)
in a sensible way. Essentially, we need a chain rule for S.D.E.s. This chain rule is the
Itô Formula.

5.2.1 Itô Formula

Consider an S.D.E. of the form

dXt = ↵(t,Xt) dt+ �(t,Xt) dWt .

Let G(t, x) be a real valued function with continuous partial derivatives

Gt = Gt(t, x) =
@G

@t
, Gx = Gx(t, x) =

@G

@x
, Gxx = Gxx(t, x) =

@
2
G

@x2
,
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then

dG(t,Xt) =

✓
Gt(t,Xt) + ↵(t,Xt)Gx(t,Xt) +

1

2
�
2(t,Xt)Gxx(t,Xt)

◆
dt+

+ �(t,Xt)Gx(t,Xt) dWt .

Sketch proof (not examinable)

To give an indication of why this is the case, write

dG(t, x) ⇡ G(t+�t, x+�x)�G(t, x) .

Now take a Taylor series expansion of G(t+�t, x+�x) about (t, x) to give

dG(t, x) ⇡ �tGt +�xGx +
1

2
(�t)2 Gtt +

1

2
�t�xGtx +

1

2
(�x)2 Gxx + . . .

where Gtt = @
2
G/@t

2 and Gtx = @
2
G/@t@x. Now replace �x with ↵�t+ ��W and (�x)2

by ↵
2(�t)2 + 2↵��t�W + �

2(�W )2 to obtain

dG(t, x) ⇡ �tGt + (↵�t+ ��W )Gx +
1

2
(�t)2 Gtt +

1

2
(↵(�t)2 + ��t�W )Gtx +

+
1

2
(↵2(�t)2 + 2↵��t�W + �

2(�W )2)Gxx + . . .

Now approximate (�W )2 by �t (and note in fact that E[(�W
2)] = �t) to write the

preceding expression as

dG(t, x) ⇡
✓
Gt + ↵Gx +

�
2

2
Gxx

◆
�t+ �Gx�W + o(�t) .

Itô’s formula then follows by letting �t ! 0. The above sketch proof is not examinable.

Comments

• We can write down Itô’s formula for a function of Brownian motion Wt by noting
that Wt satisfies an S.D.E. with Xt = Wt, ↵(t,Xt) = 0 and �(t,Xt) = 1. Hence for a
function G(t,Wt) we obtain

dG(t,Wt) =

✓
Gt(t,Wt) +

1

2
Gxx(t,Wt)

◆
dt+Gx(t,Wt) dWt . (13)

This is known as the special case of Itô formula and is appropriate for deriving the
S.D.E. satisfied by a function of t and Wt.
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Example 5.1 (Two applications of Itô formula)

Deriving the S.D.E. satisfied by G.B.M.

Consider again the task of formulating geometric Brownian motion (to model stock price
St) as an S.D.E. We can write St = exp(Xt) where

Xt = X0 +

✓
µ� �

2

2

◆
t+ �Wt

and X0 = log(S0). The S.D.E. satisfied by the Xt process is then given by

dXt =

✓
µ� �

2

2

◆
dt+ � dWt .

Hence, we derive an S.D.E. for St by applying Itô’s formula with G(t, x) = e
x. Identify

Gt = 0 , Gx = e
x
, Gxx = e

x
.

Hence
Gt(t,Xt) = 0 , Gx(t,Xt) = e

Xt , Gxx(t,Xt) = e
Xt

and applying Itô’s formula gives

d
�
e
Xt
�

=

✓
µ� �

2

2

�
e
Xt +

1

2
�
2
e
Xt

◆
dt+ �e

Xt dWt

) d
�
e
Xt
�

= µe
Xt dt+ �e

Xt dWt .

Now, writing St = e
Xt , we obtain the usual S.D.E. for geometric Brownian motion as

dSt = µSt dt+ �St dWt .

Solving the S.D.E. satisfied by G.B.M.

We can solve the above S.D.E. explicitly (in the sense that we can obtain a closed form
expression for St). Take the S.D.E. satisfied by G.B.M. and write

1

St
dSt = µ dt+ � dWt ,

)
Z t

0

1

S⌧
dS⌧ =

Z t

0

µ d⌧ + �

Z t

0

dW⌧ ,

which suggests that the solution involves log(St). We can check this hunch via Itô formula.
Apply the Itô formula to log(St) by taking G(t, x) = log(x) and identify

Gt(t, St) = 0 , Gx(t, St) =
1

St
, Gxx(t, St) = � 1

S2
t

.
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Hence,

d (log(St)) =

✓
µSt

1

St
� 1

2
S
2
t

�
2

S2
t

◆
dt+ �St

1

St
dWt

=

✓
µ� 1

2
�
2

◆
dt+ � dWt .

Our hunch is just about correct, except for the extra term involving �
2 appearing on the

RHS. Nevertheless, we may still proceed by integrating both sides of the preceding equation
to give

Z t

0

d (log(S⌧ )) =

Z t

0

✓
µ� 1

2
�
2

◆
d⌧ +

Z t

0

� dW⌧

) log

✓
St

S0

◆
=

✓
µ� 1

2
�
2

◆
t+ �Wt

) St = S0 exp

⇢✓
µ� 1

2
�
2

◆
t+ �Wt

�

which is exactly what we would expect.

Example 5.2

Using Itô’s formula, solve Z t

0

W⌧ dW⌧ .

Solution

We would expect the solution to the above integral to contain a W
2
t term. Therefore we find

d(W 2
t ) via Itô’s formula for functions of Brownian motion, given by equation (13).

Set G(t, x) = x
2 and calculate

Gt(t,Wt) = 0 , Gx(t,Wt) = 2Wt , Gxx(t,Wt) = 2 .

Hence, we obtain

d(W 2
t ) = dt+ 2Wt dWt

) Wt dWt =
1

2
d(W 2

t )�
1

2
dt

)
Z t

0

W⌧ dW⌧ =
1

2

Z t

0

d(W 2
⌧ )�

1

2

Z t

0

d⌧

=
1

2
W

2
t � 1

2
t .
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Example 5.3

Show that Yt = t
3 + t

2
W

4
t is an Itô process by writing it in the form

dYt = ↵t dt+ �t dWt

for suitable choices of the processes ↵t and �t.

Solution

We use the special case of Itô’s formula (13) with G(t, x) = t
3 + t

2
x
4. Hence

Gt(t,Wt) = 3t2 + 2tW 4
t , Gx(t,Wt) = 4t2W 3

t , Gxx(t,Wt) = 12t2W 2
t

and we get

d(t3 + t
2
W

4
t ) = dYt =

�
3t2 + 2tW 4

t + 6t2W 2
t

�
dt+ 4t2W 3

t dWt

which is in the form required.

5.3 Solving S.D.E.s numerically

Consider the task of generating a skeleton path on [0, T ] of a process satisfying an S.D.E.
of the form given by

dXt = ↵(t,Xt) dt+ �(t,Xt) dWt .

This would typically involve solving the S.D.E. analytically to obtain the transition density,
and then simulating using this density. For example, a Gaussian transition density is
obtained for generalised B.M. and a log-normal transition density is obtained for geometric
B.M. However, for all but the most trivial of cases, solving the S.D.E. is impossible. We
therefore seek to approximate a skeleton sample path of Xt by a single realisation of a
numerical solution; although many types of numerical solution exist, only the simplest
scheme, the Euler-Maruyama method, is considered here. For a small time increment �t,
the first order Euler-Maruyama approximation of the above S.D.E. is

�Xt = ↵(t,Xt)�t + �(t,Xt)�Wt ,

where �Wt = (Wt+�t � Wt) ⇠ N(0,�t). A sample path is then constructed by dividing
the time interval [0, T ] into n equidistant points, 0 = t0 < t1 < . . . < tn = T (so that
�t = ti+1 � ti and �Wti = Wti+�t � Wti). Denoting the numerical solution at times
t0, . . . , tn by X0, . . . , Xn and using the equation directly above yields the recursion,

Xi = Xi�1 + ↵(ti�1, Xi�1)�t + �(ti�1, Xi�1)�Wti�1 , Xt0 = X0 , i = 1, . . . , n .
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Algorithmically:-

1. Initialise with X0. Put i := 1

2. Simulate Xi ⇠ N(Xi�1 + ↵(ti�1, Xi�1)�t , �
2(ti�1, Xi�1)�t)

3. If ti = T , stop otherwise put i := i+ 1 and go to step 2.

As an example, consider the S.D.E. formulation of a geometric Brownian motion process
(denoted by Xt here),

dXt = µXt dt+ �Xt dWt .

To make the distinction between the exact solution and an approximate solution (obtained
via Euler-Maruyama), consider a time interval [t, t+�t] and suppose that we have Xt = xt

at time t. The analytic solution over this time interal is

Xt+�t = xt exp
�
(µ� �

2
/2)�t+ �(Wt+�t �Wt)

 

for which we see

Xt+�t|Xt = xt ⇠ LN
�
log xt + (µ� �

2
/2)�t , �

2�t
�
.

The Euler-Maruyama approximation gives

Xt+�t = xt + µxt�t+ �xt(Wt+�t �Wt)

for which we see
Xt+�t|Xt = xt ⇠ N

�
xt + µxt�t , �

2
x
2
t�t
�
.

Although beyond the scope of the course, taking the power series characterisation of the
exponential function and truncating terms can be used to obtain the Euler-Maruyama
approximation from the analytic solution.

The following suite of R functions generate a numerical solution to the S.D.E. formulation
of geometric Brownian motion:

itosim=function(T=20,dt=0.01,x0=40,afun=alpha,bfun=beta)
{
n=T/dt
xvec=vector("numeric",n+1)
xvec[1]=x0
for(i in 2:(n+1))
{
t=i*dt
xvec[i]=xvec[i-1]+afun(xvec[i-1],t)*dt+bfun(xvec[i-1],t)*rnorm(1,0,sqrt(dt))

}
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xvec
}

alpha=function(x,t)
{
mu=0.1
mu*x

}

beta=function(x,t)
{
sigma=0.2
sigma*x

}

Note that this flexible setup allows us to simulate from any (univariate) S.D.E. simply by
re-writing the alpha and beta functions. The main itosim function remains unchanged.
We plot the numerical solution with

plot(ts(itosim(),start=0,deltat=0.01))

Time

0 5 10 15 20

50
10

0
15

0
20

0

Time

0 5 10 15 20

20
30

40
50

Figure 12: 2 simulated realisations of a geometric B.M. with x0 = 40, µ = 0.1 and � = 0.2
found by numerically solving the S.D.E.

Comment

• Taking �t smaller and smaller gives increased accuracy at greater computational
expense.
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5.3.1 Assessing the accuracy of the Euler-Maruyama scheme (not examinable)

Suppose that we’re interested in the accuracy of the numerical scheme at some (maturity)
time T . Let X�t

T denote the Euler-Maruyama approximation of XT at time T , based on a
discretisation (step-size) of �t.

The numerical scheme is strongly convergent if

lim
�t!0

E
�
|XT �X

�t
T |
�
= 0.

The numerical scheme is weakly convergent if

lim
�t!0

��E{g(XT )}� E{g(X�t
T )}

�� = 0

for polynomials g(·).
The Euler-Maruyama scheme is strongly and weakly convergent subject to suitable condi-
tions on the drift and di↵usion coe�cient. We may also wonder how good the approximation
is for a particular �t. The numerical scheme is strongly convergent with order � if

E
�
|XT �X

�t
T |
�
 CT (�t)�

where the constant CT depends on T and the considered SDE. The numerical scheme is
weakly convergent with order � if

��E{g(XT )}� E{g(X�t
T )}

��  C
g
T (�t)�

where Cg
T depends on T , g and the considered SDE. If a numerical scheme is convergent with

order � and we make the step size k times smaller, the approximation error will decrease
by a factor k�.

The Euler-Maruyama scheme is weakly convergent with order 1 and strongly convergent
with order 0.5. Therefore, the order equal 1 means that if we want to decrease the error
100 times, we have to make the step 100 times smaller. The order equal to 0.5 means that
if we want to decrease the error 100 times, we have to make the step 1002 = 10000 times
smaller. Consequently, the Euler-Maruyama scheme is useful for pricing options whose
payo↵ is not path-dependent. Where the payo↵ is path-dependent, a higher order scheme
(e.g. the Milstein scheme) should be used.
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5.4 Models of Interest Rate

Interest rate derivatives are instruments whose payo↵s are dependent on the level of in-
terest rates. Such derivatives can be more di�cult to value than equity or exchange rate
derivatives because

• the behaviour of an individual interest rate is more complicated than that of a stock
price,

• interest rates are used for discounting as well as for defining the payo↵ from the
derivative.

In this Section, we will consider several models which provide a description of how short-
term interest rate changes through time. The short rate rt is the rate that applies to an
infinitesimally short period of time at time t.

We will describe the short rate as an Itô process of the form

drt = ↵(rt) dt+ �(rt) dWt

where the drift and di↵usion coe�cients are independent of time. We will consider three
models

1. ↵(rt) = µrt, �(rt) = �rt (Rendleman and Bartter model),

2. ↵(rt) = a(b� rt), �(rt) = � (Vasicek model),

3. ↵(rt) = a(b� rt), �(rt) = �
p
rt (Cox, Ingersoll and Ross model).

5.4.1 Rendleman and Bartter Model

In the Rendleman and Bartter model, the short rate is governed by the S.D.E.

drt = µrt dt+ �rt dWt .

This means that rt follows a geometric Brownian motion and is the same type of process
that we assumed for stock price in Section 1. This assumption is a good starting point; for
example, the model ensures that interest rates are positive. However, some key properties
are also lacking, such as mean reversion.

Definition 5.3 (mean reversion)

When interest rates are high, the economy tends to slow down and there is a low demand
for funds from borrowers. As a result, rates go down. When rates are low, there is a high
demand from borrowers and rates tend to rise. This is known as mean reversion. The e↵ect
is negative drift when rt is high and positive drift when rt is low. Overall, interest rates
appear to be pulled back to some long-run average level over time.
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Comment

The Rendleman and Bartter model does not incorporate mean reversion since plainly,

E (rt) = r0 exp (µt) ! 1 as t ! 1

for µ positive. If µ is negative,

E (rt) = r0 exp (µt) ! 0 as t ! 1.

Neither scenario is compatible with the definition of mean reversion.

5.4.2 Vasicek Model

Here, the short rate is modelled by

drt = a(b� rt) dt+ � dWt ,

where a, b and � are positive real numbers. Note that the model incorporates mean reversion
and rt is pulled to a level b at rate a. The process is also known as a Gaussian Ornstein-
Uhlenbeck process.

a

Time
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0.
08

0.
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20
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20
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30

Figure 13: 2 simulated skeleton paths from the Vasicek model with b = 0.1, � = 0.02 and
(a) a = 1, and (b) a = 0.1

To see that the Vasicek model is mean reverting, we apply Itô’s formula with G(t, x) = xe
at.

We obtain
Gt = xae

at
, Gx = e

at
, Gxx = 0 .

Hence,
Gt(t, rt) = arte

at
, Gx(t, rt) = e

at
, Gxx(t, rt) = 0
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Thus,

d
�
rte

at
�

=
�
arte

at + a(b� rt)e
at
�
dt+ �e

at
dWt

= abe
at
dt+ �e

at
dWt

) rte
at � r0 =

Z t

0

abe
a⌧
d⌧ + �

Z t

0

e
a⌧
dW⌧

) rte
at = r0 + [bea⌧ ]t0 + �

Z t

0

e
a⌧
dW⌧

) rt = r0e
�at + b(1� e

�at) + �e
�at

Z t

0

e
a⌧
dW⌧

To proceed, we need (the first part) of the following result for square-integrable functions
g(t).

Result 5.1

(i) E
⇣R t

0 g(⌧)dW⌧

⌘
= 0

(ii) E

✓hR t

0 g(⌧)dW⌧

i2◆
=
R t

0 g
2(⌧)d⌧ .

Note that part (ii) is known as the Itô isometry. Justification of this result is left as an
exercise. Combining the two results and noting that Itô integrals involve combinations of
normal random variables leads to part (iii) that

(iii) Z t

0

g(⌧)dW⌧ ⇠ N

✓
0 ,

Z t

0

g
2(⌧)d⌧

◆
.

Now, returning to the Vasicek model and using the fact that E
⇣R t

0 g(⌧)dW⌧

⌘
= 0, we have

E(rt) = r0e
�at + b(1� e

�at)

which is just b in the limit as t ! 1. The Vasicek model is mean reverting.

As an interesting exercise, we may also find the variance of rt. We have using (ii) of Result
5.1 that

V ar(rt) = �
2
e
�2at

Z t

0

e
2a⌧

d⌧

=
�
2

2a

�
1� e

�2at
�
.
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Part (iii) of Result 5.2 then gives

rt|r0 ⇠ N

✓
r0e

�at + b(1� e
�at) ,

�
2

2a

�
1� e

�2at
�◆

.

This distribution can be sampled recursively to give a skeleton path of the process (that
is, a realisation of the process at discrete times). Two such realisations can be seen in
Figure 13. The e↵ect of mean reversion is apparent, as is the e↵ect of a, since the larger the
value of a results in stronger reverting behaviour. It should also be clear that the Vasicek
model allows for negative interest rates, which is an undesirable property.

5.4.3 Cox, Ingersoll and Ross Model

In the model proposed by Vasicek, the short term rate can become negative. Whilst this
is not considered impossible by some (in practical terms), others consider it to be unsat-
isfactory. Cox, Ingersoll and Ross propose an alternative model where rates are always
nonnegative,

drt = a(b� rt) dt+ �
p
rt dWt ,

where a, b and � are positive real numbers. The process is mean reverting and the standard
deviation of the change in interest rate in a short time period is proportional to

p
rt.

Consequently, as short rate increases, so does the standard deviation. Although the S.D.E.
can be solved analytically, this task is beyond the scope of the course. Therefore, skeleton
paths were generated using the Euler-Maruyama scheme and plotted in Figure 14. Finally,
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Figure 14: 2 simulated skeleton paths from the CIR model with b = 0.1, � = 0.02 and (a)
a = 1, and (b) a = 0.1

note that the process is non-negative. To see this intuitively (rather than formally), note
that the infinitesimal variance �

2
rt tends to zero as the process approaches zero (from

above). We expect this to be the case for non-negative processes, otherwise fluctuations
around zero due to the non-negligible stochastic noise term near zero will send the process
negative.
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5.5 Stochastic Volatility Models (not examinable)

We have seen in Section 3 that it may be unreasonable to assume that the volatility of
a stock is constant over time. Here, we use the S.D.E. formalism to construct a class
of models whose volatility is also a stochastic process. Such models are called stochastic
volatility (S.V.) models. We will consider models of the form

dSt = (µ� q)St dt+ St

p
Vt dW1,t

dVt = a(b� Vt) dt+ �

p
Vt dW2,t

where St is an asset’s price, Vt is a volatility process, µ, q, a, b, � are constants and W1,t,
W2,t are uncorrelated Brownian motions. Clearly, Vt is of C.I.R. type and St (conditional
on Vt) is of G.B.M. type. Note that we can write this model in the form

dXt = ↵(Xt) dt+ �(Xt) dWt

by setting

Xt =

✓
St

Vt

◆
, ↵(Xt) =

✓
(µ� q)St

a(b� Vt)

◆
, �(Xt) =

✓
St

p
Vt 0

0 �
p
Vt

◆
, dWt =

✓
dW1,t

dW2,t

◆
.

By adopting the notation of Section 5.3 for a partition of [0, T ], the Euler approximation
for this model is given by

Si = Si�1 + (µ� q)Si�1 �t+ Si�1

p
Vi�1 �W1,t

Vi = Vi�1 + a(b� Vi�1)�t+ �

p
Vi�1 �W2,t

for i = 1, . . . , n with �W1,t ⇠ N(0,�t) and �W2,t ⇠ N(0,�t) uncorrelated. Since the
volatility process is independent of the price process, we simulate a skeleton path from the
S.V. model with the following algorithm:

1. Initialise with S0, V0.

2. For i = 1, . . . , n, draw Vi ⇠ N(Vi�1 + a(b� Vi�1)�t , �
2
Vi�1�t).

3. For i = 1, . . . , n, draw Si ⇠ N(Si�1 + (µ� q)Si�1 �t , S
2
i�1Vi�1�t).

Figure 15 shows a simulated skeleton path from the S.V. model. It is easy to see the e↵ect
of the volatility realisation on the stock price realisation.

Naturally, the S.V. model can be used to price options. Since typically no closed form
pricing formulae exist when it is assumed that stock price follows the S.V. model, the
Monte Carlo methods of Section 3 must be used.
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Figure 15: 1 simulated skeleton path from the S.V. model with µ = 0.1, q = 0.0, a = 0.2,
b = 0.1 and � = 0.02. Plot (a) shows the St process and plot (b) shows the Vt process.

Example 5.4

Suppose that stock price follows a S.V. model with parameters q = 0.0, a = 0.2, b = 0.1
and � = 0.02. Suppose further that the initial price of stock is £40, the risk free interest
rate is r = 0.05, and we wish to find the fair price of the Asian call option with strike price
K = 50 and maturity T = 1 year.

We estimate the fair price via Monte Carlo by performing the following steps:

1. Simulate daily prices S
d
0 , S

d
1 , . . . , S

d
252 in the risk-neutral world. For the S.V. model,

this means setting µ = r.

2. Calculate the payo↵ at time T = 1:

 
252X

i=1

S
d
i

252
�K

!+

.

3. Repeat steps 1 and 2 to get N sample values of the payo↵.

4. Calculate the mean of these sample payo↵s to get an estimate of the expected payo↵.

5. Discount the expected payo↵ at the risk-free interest rate (r = 0.05 here) to get an
estimate of the value of the option.
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The following R function performs the algorithm:

sv=function(T=1,dt=1/252,s0=c(50,0.1),r=0.05,a=0.2,b=0.1,sigma=0.02,k=50,N=1000)
{
n=T/dt
sdt=sqrt(dt)
s=matrix(0,ncol=2,nrow=n+1)
payoff=vector("numeric",len=N)
for(j in 1:N)
{
s[1,]=s0
for(i in 2:(n+1))
{
s[i,2]=s[i-1,2]+a*(b-s[i-1,2])*dt+sigma*sqrt(s[i-1,2])*rnorm(1,0,sdt)

}
for(i in 2:(n+1))
{
s[i,1]=s[i-1,1]+r*s[i-1,1]*dt+sqrt(s[i-1,2])*s[i-1,1]*rnorm(1,0,sdt)

}
payoff[j]=max(mean(s[,1])-k,0)

}
exp(-r*T)*mean(payoff)

}

A single execution of this function gave an estimate of £3.80 for the fair price.
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