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4 Pricing Exotic Options via Monte Carlo

The options considered up until now are termed vanilla options – they have standard, well
defined properties and their prices are regularly quoted by exchanges or brokers. Here,
we will consider some nonstandard exotic options whose prevalence has increased in recent
years. In general, the payo↵ of these options at maturity depends not only on the stock
price at that time but also on the path leading up to it. Consequently, explicit formulas
(assuming a risk neutral G.B.M.) for these options can be di�cult to find. We will therefore
show how to use Monte Carlo simulation to compute their fair price. For simplicity (and to
allow convenient Monte Carlo simulation) we will only consider options with fixed exercise
times. The exotic options we will consider are:

• Power call options,

• Barrier options (calls and puts),

• Asian and lookback options (calls and puts).

4.1 Power Options

Recall that the standard European call option with strike price K has payo↵ at maturity
T given by

max(ST �K, 0) = (ST �K)+ .

That is, the payo↵ is a linear function of stock price at maturity. More general call options
exist, for example those with payo↵ given by

(S�
T �K)+

are called power options and � is called the power parameter (which in practice is a number).

Definition 4.1

A power call option gives the holder the right (but not obligation) to buy 1 share of stock
for K and then immediately sell for market value raised to the power �.

Pricing the power call option

It turns out that we can find an explicit formula for the risk-neutral G.B.M. valuation (fair
price) of such options. This will be useful for comparing against estimation strategies later
on.
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Figure 10: Power call option payo↵ with K = 10 and � = 2 (quadratic after
p
10) and

� = 1 (linear after 10).

Let C�(S0, T,K, �
2
, r) denote the price of the European call option with power �. As usual,

S0 is the initial stock price, T is the maturity, K is the strike price, �2 is the volatility
(under the assumption of G.B.M.) and r is the interest rate. Hence, C1(S0, T,K, �

2
, r) =

C(S0, T,K, �
2
, r) denotes the Black-Scholes price of the vanilla call option, that is, with

power parameter 1. In particular, note that the Black-Scholes price of one European call
option is the discounted expected payo↵ at maturity

C1(S0, T,K, �
2
, r) = e

�rTE
⇥
(ST �K)+

⇤

= e
�rTE


(S0

ST

S0
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�

where ST/S0 ⇠ LN([r � �
2
/2]T, �2

T ) under the assumption of risk-neutral G.B.M. We
know that this expression can be evaluated to give the Black-Scholes formula of Section 2.

Now, the fair price of the power call option is

C�(S0, T,K, �
2
, r) = e

�rTE
⇥
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Now, under the assumption that stock prices follow the risk neutral G.B.M. we know that
ST/S0 has a log-normal distribution as above. Note that

log

✓
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�
T

S
�
0

◆
= � log

✓
ST

S0

◆
⇠ N(�[r � �

2
/2]T, �2

�
2
T ).
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We can force this distribution to have the same form as G.B.M. by defining new parameters

�
2
� = �

2
�
2
, r� � �

2
�/2 = �(r � �

2
/2).

Hence,

� log
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◆
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�T )

) S
�
T

S
�
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2
�/2]T, �

2
�T ).

Now, we have C�(S0, T,K, �
2
, r) as

C�(S0, T,K, �
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�rTE
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2
�, r�)

where the last line follows by using the form of the Black-Scholes price (as a discounted
expected payo↵ with respect to a G.B.M., where in this case S0 is replaced by S

�
0 , r by r�

and � by ��). Hence we have found an explicit formula for the fair price of a power call
option with parameter �. Let’s see how this works with an example.

Example 4.1

Find the fair (risk-neutral) price of a power call option with maturity T = 2 years, strike
price £3000, initial stock price S0 = £50 and payo↵, max(S2

T �K, 0) (a power parameter
of 2). Suppose further that the risk-free interest rate is r = 0.05 and stock price follows a
geometric Brownian motion with volatility parameter �2 = 0.01.

Solution

The fair price of the option is

C�(S0, T,K, �
2
, r) = e

�rT
e
r�TC1(S

�
0 , T,K, �

2
�, r�)

where S0 = 50, T = 2, K = 3000, �2 = 0.01, r = 0.05, � = 2, S2
0 = 2500, �2

� = �
2
�
2 = 0.04

and

r� � �
2
�/2 = 0.09

) r� = 0.09 + 0.02 = 0.11 .

www.ncl.ac.uk/maths-physics/ 49



MAS3904: Stochastic Financial Modelling

We compute C1(S
�
0 , T,K, �

2
�, r�) using the Black-Scholes formula of Section 2,

C1(S
�
0 , T,K, �

2
�, r�) = 2500�(!)� 3000e�0.11⇥2�(! � 0.2

p
2)

where

! =
0.11⇥ 2 + 0.22 ⇥ 2/2� log(3000/2500)

0.2
p
2

= 0.2746

and recall that log is base e. Hence we obtain C1(S
�
0 , T,K, �

2
�, r�) = 324.59. Therefore the

fair price of the power call option is

C�(S0, T,K, �
2
, r) = e

(0.05+2⇥0.12/2)2 ⇥ 324.59

= 365.97.

We will revisit this example later on, when looking at Monte Carlo pricing.

4.2 Barrier Options

Barrier options are options whose payo↵ depends on whether the asset’s price reaches a
certain level before maturity. To define a European barrier call option with strike price
K and maturity T , we specify a barrier ⌫ – depending on the type of barrier option, the
option either comes alive or is killed when the barrier is breached.

Definition 4.2

There are several types of barrier option:

• A down-and-in barrier option gives the holder the right to exercise the option at time
T provided that the stock price goes below ⌫ at some time before T i.e. the option
becomes alive only if the security’s price goes below ⌫ before T .

• A down-and-out barrier option is killed if the security’s price goes below ⌫ before T .
Note that in both the down-and out and down-and-in options, ⌫ is a value less than
the initial stock price S0.

• An up-and-in barrier option becomes alive only if the security’s price goes above ⌫

before T .

• An up-and-out barrier option is killed if the security’s price goes above ⌫ before T .
Note that in both the up-and out and up-and-in options, ⌫ is a value greater than
the initial stock price S0.
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Figure 11: Up-and-out barrier call option. Two stock price path scenarios.

Illustration

Figure 11 shows an example of an up-and-out barrier call that either expires worthless
(barrier breached) or not (barrier not breached and above strike at maturity).

Comments

• Provided the option remains alive, the payo↵ at time T (for the European call) is
max(ST �K, 0). If the option is killed at any time, the payo↵ is 0.

• The same definitions exist for the European barrier put, the only di↵erence being
that if the option remains alive, the payo↵ at maturity is max(K � ST , 0).

• If you own both a down-and-out and a down-and-in call option both the same strike
price K and maturity T then this is equivalent to owning one vanilla call option (with
parameters K and T ). This is true since only one option can be in play at any time t
(the down-and-in option if the barrier is breached and the down-and-out otherwise).
Consequently, if we denote by Cdi and Cdo the respective risk neutral present values
of owning the down-and-in and down-and-out call options, then

Cdi + Cdo = C

where C is the Black-Scholes valuation of the vanilla European call option given in
Section 2. A similar argument follows for the up-and-in and up-and-out options.

• We typically observe stock price on a daily basis. Therefore, let

S
d
i = Si/252
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denote the price on day i at some arbitrary time. Hence, the down-and-in barrier call
option has payo↵

⇢
(ST �K)+ if Sd

i  ⌫ for some i = 1, . . . , 252T
0 if Sd

i > ⌫ for all i = 1, . . . , 252T

Similarly, the down-and-out call option has payo↵
⇢

0 if Sd
i  ⌫ for some i = 1, . . . , 252T

(ST �K)+ if Sd
i > ⌫ for all i = 1, . . . , 252T

4.3 Asian and Lookback Options

Asian options are options whose payo↵ depends on the average price of the asset during
at least some part of the asset’s lifetime. These averages are usually in terms of the daily
closing prices and we therefore let

S
d
i = Si/252

denote the price on day i as before. The most common Asian-type call option with strike
price K and maturity T (in years) has the following definition.

Definition 4.3

The holder of the Asian call option has the right (but not obligation) to buy 1 share for K
and sell for the average price realised over (0, T ].

Hence, assuming daily prices, the payo↵ is

 
252TX

i=1

S
d
i

252T
�K

!+

.

A common Asian put option with strike price K and maturity T has payo↵

 
K �

252TX

i=1

S
d
i

252T

!+

.

Definition 4.4

The holder of the lookback call option has the right (but not obligation) to buy 1 share for

K = min
i=1,...,252T

S
d
i

at time T .
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Hence, the lookback call option with maturity T has strike price given by the minimum
end-of-day price up to the maturity time. The payo↵ at time T is

ST � min
i=1,...,252T

S
d
i .

The lookback put has strike price given by the maximum end-of-day price up to the maturity
time. Hence, the payo↵ is

max
i=1,...,252T

S
d
i � ST .

Note that because the payo↵s of both the lookback and Asian type options depend on
the price path followed, there are no known exact formulas for the risk-neutral valuations
of these options. However, approximate valuations are possible by using Monte Carlo
simulation methods.

4.4 Monte Carlo Integration

Suppose we have a random variable X with p.d.f. fX(x) and our goal is to estimate

✓ = E(X) =

Z

X

xfX(x) dx .

If we can generate values of X1, . . . , XN from fX(·) then an unbiased estimator of the
theoretical mean ✓ = E(X) is given by the sample mean

X̄ =
1

N

NX

i=1

Xi .

Plainly,

E(X̄) =
1

N

NX

i=1

E(Xi) = ✓ .

Now suppose that Var(X) = v
2 then

Var(X̄) =
1

N2

NX

i=1

Var(Xi) = v
2
/N .

Hence we have shown that X̄ is both unbiased and consistent. Of course this argument
can be generalised. Suppose our goal is to evaluate E(g(X)) for some function g(·). By
definition,

E(g(X)) =

Z

X

g(x)fX(x) dx .
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However, if we cannot perform the integration, how can we proceed? Again, if we can
generate values of X1, . . . , XN , then an unbiased estimator of E(g(X)) is given by

1

N

NX

i=1

g(Xi)

and this estimator has variance proportional to 1/N . Therefore, better estimates (in the
sense of a small variance) are obtained for large N . This approach is known as Monte Carlo
simulation and can be applied to the pricing problem as follows.

4.5 Pricing via Simulation

Suppose we are interested in finding the fair (risk-neutral) price of an option with payo↵
g(·) at maturity T (in years) depending on daily stock price S

d
1 , . . . , S

d
252T . If the risk free

interest rate is r, then this price is given by the discounted expected payo↵ at maturity.
This is exactly the problem described above, in the sense that the expectation involves
integration, and so we can apply Monte carlo simulation. Algorithmically, we perform the
following

1. Simulate a random path S
d
0 , S

d
1 , . . . , S

d
252T in the risk-neutral world.

2. Calculate the payo↵ g(·) from the option at time T .

3. Repeat steps 1 and 2 to get say N sample values of the payo↵.

4. Calculate the mean of these sample payo↵s to get an estimate of the expected payo↵.

5. Discount the expected payo↵ at the risk-free interest rate to get an estimate of the
value of the option.

If we assume that stock prices follow a risk-neutral G.B.M. then we have already seen how
to simulate this process in Section 2.

Example 4.1 revisited

Find the fair (risk-neutral) price of a power call option with maturity T = 2 years, strike
price £3000, initial stock price S0 = £50 and payo↵, max(S2

T �K, 0) (a power parameter
of 2). Suppose further that the risk-free interest rate is r = 0.05 and stock price follows
a geometric Brownian motion with volatility parameter �2 = 0.01. Compare the analytic
fair price to estimates obtained via Monte Carlo.

www.ncl.ac.uk/maths-physics/ 54



MAS3904: Stochastic Financial Modelling

Solution

Recall that the exact fair price is 365.97. We can also estimate the fair price of the option
via Monte Carlo. A key step is the simulation of the stock price process. Recall from
Section 2.3.1 that for an equally spaced partition of [0, T ] with time step �t

Sti = Sti�1 exp
�
(r � �

2
/2)�t+ �(Wti �Wti�1)

 

where Wti � Wti�1 ⇠ N(0,�t). To simulate on a daily basis, we set �t = 1/252 and,
starting with S

d
0 as a known value, simulate S

d
1 , . . . S

d
252T via the recursion

S
d
i = S

d
i�1 exp

⇢
(r � �

2
/2)

1

252
+ �(W d

i �W
d
i�1)

�
, i = 1, 2, . . . , 252T

where 252T is the maturity time in days. We then calculate a sample value of the expected
payo↵ at time T , via

X1 = max
�
(Sd

252T )
2 � 3000, 0

�
.

We repeat these steps a further N �1 times to give N sample payo↵s X1, . . . , XN . We take
the average and discount at the risk free interest rate to give an estimate of the fair price
of the power option as

e
�rT 1

N

NX

i=1

Xi .

The following R function takes as arguments S0, K, T , �, �, r and N , and returns the
Monte Carlo estimate of the fair price of the power option.

monte1=function(T=2,s0=50,r=0.05,sig=0.1,k=3000,N=1000)
{
n=T*252
s=vector("numeric",len=n+1)
payoff=vector("numeric",len=N)
for(j in 1:N){
s[1]=s0
for(i in 2:(n+1))
{
s[i]=s[i-1]*exp(rnorm(1,(r-0.5*sig*sig)/252,sig/sqrt(252)))

}
payoff[j]=max((s[n+1])^(2)-k,0)

}
exp(-r*T)*mean(payoff)

}
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A single execution of this function (with N = 10000) gave an estimate of 372.10 which is in
reasonable agreement with the actual price of 365.97. Note that the payo↵ is not dependent
on the whole path, only the price of the stock at maturity. Since we know the distribution
of ST (log-normal), it is far more e�cient to simulate N values of ST and then set

Xi = max
�
(ST )

2 � 3000, 0
�
i = 1, . . . , N

before taking the discounted average as an estimate of the fair price. The required R function
is

monte1=function(T=2,s0=50,r=0.05,sig=0.1,k=3000,N=1000)
{
payoff=vector("numeric",len=N)
for(j in 1:N)
{
s=s0*exp(rnorm(1,(r-0.5*sig*sig)*T,sig*sqrt(T)))
payoff[j]=max(s^(2)-k,0)

}
exp(-r*T)*mean(payoff)

}

Finally, note that every time we execute the function, we get a di↵erent estimate, since
we’re generating a realisation of the estimator, which is a random variable.

Example 4.2

Suppose that stock prices follow a G.B.M. with volatility parameter �2 = 0.01, the initial
stock price is £50, the risk free interest rate is r = 0.05. Describe a detailed Monte Carlo
algorithm to find the risk-neutral (fair) price of a down-and-in barrier call option with strike
price K = £51, maturity T = 1 year and barrier ⌫ = 49.

Solution

Let us assume that the stock price is observed daily. The fair price of the option is the
discounted expected payo↵ at time T given by

e
�rTE

�
I(Sd

252 �K)+
�

where I is an indicator function defined by

I =

⇢
1 if Sd

i  ⌫ for some i = 1, . . . , 252
0 if Sd

i > ⌫ for all i = 1, . . . , 252
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That is, the option becomes alive (and remains alive) if the end-of-day stock price falls below
⌫ at any time before maturity. We estimate the fair price Cdi of the option by implementing
the following sequence of steps:

1. Simulate a random path S
d
0 , S

d
1 , . . . , S

d
252T in the risk-neutral world, via the recursion

S
d
i = S

d
i�1 exp

⇢
(r � �

2
/2)

1

252
+ �(W d

i �W
d
i�1)

�
, i = 1, 2, . . . , 252

where W
d
i �W

d
i�1 ⇠ N(0, 1/252).

2. Calculate a sample payo↵ at time T with

X1 = I ⇥max(0, Sd
252 � 51).

3. Repeat steps 1 and 2 to get say N sample values of the payo↵,

X1, X2, . . . , XN

4. Calculate the mean of these sample payo↵s to get an estimate of the expected payo↵.

5. Discount the expected payo↵ at the risk-free interest rate to get an estimate of the
value of the option, that is, calculate

e
�rT

X̄.

In practice, this is achieved in R with (for example) the following function.

monte2=function(T=1,s0=50,r=0.05,sig=0.1,k=51,nu=49,N=1000)
{
n=T*252
s=vector("numeric",len=n+1)
payoff=vector("numeric",len=N)
for(j in 1:N){
s[1]=s0
I=0
for(i in 2:(n+1))
{
s[i]=s[i-1]*exp(rnorm(1,(r-0.5*sig*sig)/252,sig/sqrt(252)))
if(s[i]<nu)
{
I=1

}
}
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payoff[j]=max(I*(s[n+1]-k),0)
}
exp(-r*T)*mean(payoff)

}

A single call of this function with N = 10000 gave an estimate of Cdi as 1.24. We can use
this value to estimate the fair price Cdo of the down-and-out barrier call option (with the
same parameters) by using the relation in the comments on page 54. We calculate the fair
price of the vanilla call option (with the same parameters) via the Black-Scholes formula.
Performing the desired calculation gives C = 2.80. Hence an estimate of Cdo is 1.56.

Comments

• Note that between any two time instants ti and ti+1 at which we observe the stock, St

could fall below ⌫ but then increase su�ciently to become greater than ⌫ before ti+1.
This breaking of the barrier would go undetected as we only have the sample path at
discrete time intervals. However, provided we use a su�ciently fine discretisation, the
probability of this occurring is very small. Hence, the error introduced from discrete
sampling of the path is small.

4.6 Variance Reduction Techniques

Consider the task of choosing the number of simulated payo↵s, N , in the Monte-Carlo
estimate of the fair price of a particular option with payo↵ function g(·). Denote the fair
price by � and its Monte Carlo estimator by �̂. Hence,

� = e
�rTE {g(·)}

and the Monte Carlo estimator is

�̂ =
e
�rT

N

NX

i=1

Xi

where Xi denotes a sample payo↵ and the collection of Xi are iid. Note that E(�̂) = � and
let Var(e�rT

Xi) = v
2 so that Var(�̂) = v

2
/N .

For large N , the central limit theorem applies and

�̂ ⇠ N(� , v2/N) approximately.

Hence, a 95% confidence interval is given by

�̂� 1.96
vp
N

< � < �̂+ 1.96
vp
N
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Hence our uncertainty about the value of the fair price is inversely proportional to
p
N .

Therefore, to double the accuracy of a simulation, we must quadruple N ; to increase the
accuracy by 10, the number of trials must be increased by a factor of 100.

To estimate the fair price by Monte-Carlo, we therefore typically need a very large value
of N to ensure reasonable accuracy. This can be very costly in terms of computation time.
We therefore examine a very simple technique that reduces the variance of the estimator
for given N .

4.6.1 Using Antithetic Variables

Recall that a realisation of the daily stock price process can be generated via the recursion

S
d
i = S

d
i�1 exp

⇢
(r � �

2
/2)

252
+ �(W d

i �W
d
i�1)

�
i = 1, . . . , 252T

where W
d
i �W

d
i�1 ⇠ N(0, 1/252). It will be helpful for us to re-write this equivalently as

S
d
i = S

d
i�1 exp{Yi} where Yi ⇠ N

✓
(r � �

2
/2)

252
,
�
2

252

◆
.

Hence, in step 1 of the Monte Carlo algorithm we generate Y1, . . . , Y252T and use these
values to compute S

d
1 , . . . , S

d
252T . In step 2, we calculate a realisation of the payo↵ X1 =

g(Sd
1 , . . . , S

d
252T ).

The anithetic technique re-uses / recycles the Yi in a clever way to calculate a second stock
price realisation, and in turn, a second payo↵ X2 that is negatively correlated with X1. To
this end, the anithetic technique sets

Y
⇤
i =

2(r � �
2
/2)

252
� Yi for i = 1, . . . , 252T

and uses the Y
⇤
i to generate a new realisation of the price process, Sd⇤

1 , . . . , S
d⇤
252T , before

finally computing X2 = g(Sd⇤
1 , . . . , S

d⇤
252T ). The process then repeats to calculate pairs of

negatively correlated payo↵s X3 and X4, etc.

Is this a valid Monte Carlo strategy? Yes. Note that the Y
⇤
i have the same distribution as

the Yi but are negatively correlated with the Yi. To see this, note that Y ⇤
i is just a linear

transformation of Yi and

E(Y ⇤
i ) =

2(r � �
2
/2)

252
� E(Yi) = E(Yi),

Var(Y ⇤
i ) = (�1)2Var(Yi) = Var(Yi).
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Finally,

Cov(Y ⇤
i , Yi) = Cov

✓
2(r � �

2
/2)

252
� Yi, Yi

◆

= �Var(Yi)

< 0.

This negative covariance induces a negative covariance between X1 and X2, X3 and X4 etc.
Consequently, for the antithetic scheme,

Var(X̄) =
1

N2

NX

i=1

Var(Xi) +
2

N2

X

i<j

Cov(Xi, Xj)

and we note that the first term is the variance of the estimator used in the standard Monte
Carlo scheme and the second term is negative. Hence, comapared to the standard scheme,
the antithetic scheme gives an estimator with a smaller variance.
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