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3 Estimating Volatility

In order to apply the Black-Scholes pricing formula, we need five parameters – initial stock
price S0, volatility of the stock �

2, riskless interest rate r, maturity of the option T and
strike price K. Note that four of the five parameters are known and the value of �2 needs
to be estimated. One possibility is to use historic data. In this Section we will detail how
to estimate �

2 using daily closing prices and also opening and closing prices. We will also
consider implied volatility.

3.1 Using Closing Data

Suppose that Y1, . . . , Yn are independent random variables having a common probability
distribution with mean µ0 and variance �

2
0. For unknown µ0, the usual estimator of �2

0 is
the sample variance,
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Note that the estimator is a random variable (and the capitalisation of the Yi reflects this).
Recall that the above is an unbiased estimator of �2

0 since

E(�̂2
0) = �

2
0 .

Furthermore, if the Yi are Normally distributed, it can be shown that

V ar(�̂2
0) =

2�4
0

n� 1
.

In this case, �̂2
0 is a consistent estimator of �2

0. Recall that for consistency, we need asymp-
totic unbiasedness and the variance of the estimator to tend to zero as the sample size
increases.

Proof of unbiasedness

We can show that E(�̂2
0) = �

2
0 as follows. We have that

E(�̂2
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n� 1
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!
.

Now,
V ar(Yi) = �

2
0 = E(Y 2

i )� [E(Yi)]
2
.
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Hence, using E(Yi) = µ0 and re-arranging the above gives

E(Y 2
i ) = �

2
0 + µ

2
0.

In a very similar manner, we obtain
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n
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0.

Finally,
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as required.

Application to p.a. volatility estimation

We apply this procedure to estimate the volatility of a stock price as follows. Suppose the
closing price of a stock is observed at fixed intervals of time (e.g. every day) and is assumed
to follow a G.B.M. with volatility �

2 (per annum). Define:

n+ 1: Number of observations

Ci: Closing price at the end of interval i (i = 0, . . . , n)

�t: Length of time interval in years

and let

Yi = log

✓
Ci

Ci�1

◆
.

Now, under the assumption of G.B.M. Yi follows a Normal distribution with variance �2�t.
In this context, the sample variance would give an unbiased estimator of �2�t. Therefore
we construct the estimator of �2 as

�̂
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1

�t
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Comments

• Choosing a value n is not as straightforward as would appear. Naturally, more data
will lead to more accuracy. However, it may not be reasonable to assume that the
volatility of a particular stock is the same now as, say ten years ago. We will come
back to this point later on.

• The procedure is typically used with daily data. An important point is whether
volatility should be measured per calendar year or trading year. Evidence suggests
that volatility is largely caused by trading itself and therefore �2 is typically measured
per trading year. Since there are (approximately) 252 trading days in a year (so that
1 day = 1/252 years), the estimator of �2 based on n+ 1 days of data is

�̂
2 = 252

Pn
i=1(Yi � Ȳ )2

n� 1
= 252

Pn
i=1 Y

2
i � nȲ

2

n� 1
.

Example 3.1

Consider the following closing day Gas prices (in dollars) observed on 21 consecutive days.
Assuming that Gas price follows a G.B.M., we estimate the volatility �

2 (per annum) by

Day (i) Closing Price (Ci) Day (i) Closing Price (Ci)
0 52.75 11 59.48
1 53.43 12 58.12
2 54.51 13 57.40
3 53.77 14 56.38
4 53.90 15 57.60
5 53.66 16 57.25
6 54.54 17 57.44
7 54.92 18 56.07
8 55.00 19 56.21
9 56.88 20 57.76
10 57.80

Table 2: Commodity Prices (dollars)

computing
20X
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Hence we obtain the estimate

�̂
2 = 252

0.00615� 20⇥ 0.004542

19
= 0.0761 .

Example 3.2

Here, we will consider daily closing values of the Standard and Poors 500 (S&P500) in-
dex from January 03, 2012 until October 25, 2022. The data set can be downloaded from
the course page (click Download SandP500.RData and double click the file once it’s down-
loaded). The data will then be loaded into R (RStudio) where a new vector called ‘sp’ will
be loaded into the R environment. The following commands can be used to plot:

plot(ts(sp,start=2012,deltat=1/252),xlab="Time (years)",ylab="Price (dollars)")

We can plot the daily returns, log(Ci/Ci�1) with

len = length(sp)
ret = log(sp[2:len]/sp[1:(len-1)])
plot(ts(ret,start=2012,deltat=1/252),xlab="Time (years)",ylab="Returns")
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Figure 8: Daily closing prices and returns of the S&P500 index

Figure 8 shows daily closing prices and returns. Assuming that the S&P500 index data
follows a G.B.M. we can estimate the volatility per annum, using the full set of observations,
with the command,

var(ret)*252
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which yields �̂2 = 0.0294. Note that in computing this estimate we have assumed that the
volatility is constant over the period January 03, 2012 – October 25, 2022. Figure 9 shows
estimates of square root annual volatility, �, obtained by taking the S&P500 data for each
year in turn, and applying the formula (and square-rooting). On inspection of this plot,
it appears that our assumption of a constant volatility over the entire period may be an
unreasonable one.
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Figure 9: Estimated square root volatility against year, using the S&P500 data.

3.2 Using Opening and Closing Data (not examinable)

Let Ci denote the (closing) price of a particular stock at the end of trading day i. Assuming
that stock price follows a geometric Brownian motion, log(Ci/Ci�1) follows a Normal dis-
tribution with variance �2

/252. Now let Oi denote the opening price at the start of trading
day i and write

log
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= log

✓
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.

Now, assuming that the ratio price change during a trading day is independent of the change
that happened when the market was closed (i.e. Ci/Oi and Oi/Ci�1 are independent) it
follows that

Var (log(Ci/Ci�1)) = Var (log(Ci/Oi)) + Var (log(Oi/Ci�1))

= Var (C⇤
i �O

⇤
i ) + Var

�
O

⇤
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�
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where C
⇤
i = log(Ci) and O

⇤
i = log(Oi). If we observe closing prices on days 0, 1 . . . , n and

opening prices on days 1, 2, . . . n and assume that C⇤
i �O

⇤
i and O

⇤
i �C

⇤
i�1 both have a mean

of approximately 0, then we may estimate �
2 by
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Example 3.3

Consider the following opening and closing day prices (in dollars) of the S&P500 observed
on 11 consecutive days.

Day (i) Open (Oi) Close (Ci)
0 241.13
1 241.24 242.49
2 242.71 245.73
3 245.73 248.13
4 248.18 244.35
5 244.12 241.99
6 241.13 244.06
7 244.56 250.84
8 250.67 252.04
9 252.12 254.70
10 254.70 251.79

Table 3: S&P500 opening and closing prices (dollars)

We estimate the per annum volatility �
2 by computing
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so that
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3.3 Implied Volatility

We have seen how to estimate � from historic data. In practice, traders usually work
with implied volatilities. These are the volatilities implied by option prices observed in the
market.

Definition 3.1

The implied volatility of an option is the value of the volatility (of the underlying stock
process) which when input into an option pricing model gives a value equal to the cur-
rent/quoted price of the option.

Example 3.4

Suppose that stock prices follow a risk neutral G.B.M. (with parameters r and �
2). Now

suppose that the fair price of one ECO is 1.875 when S0 = 21, K = 20, r = 0.1 and
T = 0.25. The implied volatility is the value of � that, when substituted into the Black-
Scholes formula gives C0 = 1.875.

Unfortunately, it is not possible to analytically express � as a function of S0, K, r, T using
the Black-Scholes formula. An iterative search procedure can be used instead. For example,
start with a value � = 0.2 and calculate a value for C0. The following R function should
be useful:

bs=function(s0=21,K=20,r=0.1,T=0.25,sig)
{
omega=(r*T+sig*sig*T/2-log(K/s0))/(sig*sqrt(T))
#Return BS price
s0*pnorm(omega,0,1)-K*exp(-r*T)*pnorm(omega-sig*sqrt(T))

}

Then, bs(sig=0.2) gives C0 = 1.76, which is too low. Since the fair price is increasing in
� (proof of which is beyond the scope of the course), we could try � = 0.3. We perform the
following in R:

bs(sig=0.3)
[1] 2.101014
> bs(sig=0.25)
[1] 1.926831
> bs(sig=0.21)
[1] 1.795785
> bs(sig=0.22)
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[1] 1.827633
> bs(sig=0.23)
[1] 1.860137
> bs(sig=0.235)
[1] 1.876611
> bs(sig=0.234)
[1] 1.873305

which suggests an implied volatility of 0.234-0.235. More powerful iterative search proce-
dures, such as the Newton-Raphson method could be used.
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