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2 Continuous time models

Any variable whose value changes over time in an uncertain way is said to follow a stochastic
process. Such processes can be classified as discrete time or continuous time. Stochastic
processes can also be classified as having continuous state space or discrete state space.
In this part of the course, we aim to model the dynamics of the price of a stock via a
continuous state space, continuous time stochastic process. Naturally, stock prices take
discrete values (e.g. multiples of a penny), nevertheless, the continuous state, continuous
time interpretation can be extremely useful and many important results (such as the Black-
Scholes pricing formula) can be derived from this setting.

We begin by reviewing Brownian motion and geometric Brownian motion before considering
some further topics.

2.1 Brownian motion

Definition 2.1 (stochastic process)

A stochastic process is a collection of random quantities {Xt, t 2 T} with state space S and
index set T . We will consider only continuous state space, continuous time processes, that
is with S ✓ R and T ✓ R

+.

The first such process we will consider as a model for stock price is Brownian Motion.
This long-studied process was first observed by botanist Robert Brown in 1827 (hence the
name). It was proposed as a model for asset price movements in 1900 by Louis Bachelier
whilst governing laws were stated by Albert Einstein. Norbert Wiener proved many results
including non-di↵erentiability of sample paths. Consequently, a 1-d Brownian motion is
often referred to as a Wiener process.

Definition 2.2 (standard Brownian motion)

Formally, {Wt, t � 0} is a standard Brownian motion (B.M.) if Wt depends continuously
on t, Wt 2 (�1,1) and the following 3 assumptions hold

(1) W0 = 0 with probability 1 ,
(2) The increment Wt2 �Wt1 is independent of the increment Wt1 �Wt0

for all times t2 > t1 > t0 � 0
(3) For all times 0  t1 < t2 < 1 , Wt2 �Wt1 ⇠ N(0, t2 � t1) .

Important properties

• The process is Markov : {Wt} has the property that future states are independent of
the past states given the present state.
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• Note that using Definition 2.2(1) and 2.2(3) gives Wt �W0 = Wt ⇠ N(0, t). Since we
have used W0 = 0, we may prefer to write (Wt|W0 = 0) ⇠ N(0, t).

• For times s < t define the transition density of the process by p(wt |Ws = ws). Now
note that

Wt = Wt �Ws +Ws .

From Definition 2.2(3), Wt �Ws ⇠ N(0, t� s) and so conditioning on Ws = ws gives

(Wt|Ws = ws) ⇠ N(ws, t� s) (1)

and hence the transition density is

f(wt |Ws = ws) =
1p

2⇡(t� s)
exp

⇢
�(wt � ws)2

2(t� s)

�
, �1 < wt < 1.

This is leads us to think about the process as a continuous time random walk – given
a value ws of the process at time s, the distribution of the process at a future time t

is ws plus some zero mean Gaussian noise.

• Standard Brownian motion can be generalised by scaling by a constant and shifting
by a linear function of time. A generalised Brownian motion with drift a and di↵usion
coe�cient b2 is defined as

Xt = x0 + at + bWt a 2 R, b
2 2 R

+

For times s < t we have that

Xt = Xt �Xs +Xs

= x0 + at + bWt � x0 + as + bWs +Xs

= Xs + a(t� s) + b(Wt �Ws) .

Hence
(Xt|Xs = xs) ⇠ N

�
xs + a(t� s) , b2(t� s)

�
. (2)

Note that a = 0 and b = 1 returns the standard Brownian motion process.

Example 2.1

Suppose the cash position of a company (measured in thousands of pounds) follows a
generalised B.M. with drift a = 20 per year and variance 900 per year (i.e. di↵usion
coe�cient b2 = 900). Initially the cash position is 50. Write down the distribution of the
cash position after 6 months, 1 year, 10 years.
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Solution

Denote the cash position at time t by Xt. Let x0 = 50. Using equation (2), after 6 months
(=0.5 years)

(X0.5|X0 = 50) ⇠ N (50 + 20⇥ 0.5 , 900⇥ 0.5)

= N(60 , 450)

Similarly,

(X1|X0 = 50) ⇠ N(70 , 900)

(X10|X0 = 50) ⇠ N(250 , 9000)

Note that 1. cash position can become negative (we interpret this as the situation where the
company is borrowing funds) and 2. our uncertainty increases as the square root of how far
ahead we are looking.

Example 2.2

For times r < s < t < u show that

E [(Wt �Wr)(Wu �Ws)] = t� s .

Solution

As it stands, the increments are not independent so we cannot simply take the expectation
of each term in the product. (To see this, consider the intervals (r, t) and (s, u) which
overlap.) So, we re-write the expression in such a way as to give a sum of products of
independent terms. By adding and subtracting Ws and Wt we have

E [{(Wt �Ws) + (Ws �Wr)}⇥ {(Wu �Wt) + (Wt �Ws)}] .

Now, multiplying out gives

E
⇥
(Wt �Ws)

2 + (Wt �Ws)(Wu �Wt) + (Ws �Wr)(Wu �Wt) + (Ws �Wr)(Wt �Ws)
⇤
.

The last three terms in the sum involve pairs of independent increments. Hence, upon taking
the expectation inside the brackets we see that all terms are zero except

E
⇥
(Wt �Ws)

2
⇤
= Var(Wt �Ws) = (t� s)

since E(Wt �Ws) = 0 from Definition 2.2(3).
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2.1.1 Simulating/visualising Brownian motion

The expected length of the path followed by Wt in any time interval is infinite. Conse-
quently, simulation of a full realisation of Wt on say [0, T ] is impossible. It is possible
however to construct a skeleton of a sample path of Wt by discretising time and then
simulating Wt at each time point using equation(2).

Split [0, T ] into n+1 equidistant points 0 = t0 < t1 < . . . tn = T . Let ti+1� ti = �t = T/n.
Consider a generalised B.M. Xt with drift a, di↵usion b

2 and X0 = x0. The distribution
of Xt1 conditional on X0 = x0 is Normal with mean x0 + a�t and variance b

2�t. We
simulate from this distribution to obtain a realisation of Xt1 , namely xt1 . Now simulate
Xt2 |Xt1 = xt1 ⇠ N(xt1 + a�t, b

2�t). In general, at time ti, simulate Xti |Xti�1 = xti�1 ⇠
N(xti�1 + a�t, b

2�t).

Algorithmically:-

1. Initialise X0 = x0. Put i := 1

2. Simulate Xti |Xti�1 = xti�1 ⇠ N(xti�1 + a�t, b
2�t)

3. If ti = T , stop otherwise put i := i+ 1 and go to step 2.

The following R function takes as arguments T , �t, x0, a and b, and returns a skeleton
path of a generalised B.M.

genbm=function(T=20,dt=0.01,x0=0,a=0,b=1)
{
n=T/dt
simvec=vector("numeric",len=n+1)
simvec[1]=x0
for(i in 2:(n+1))
{

simvec[i]=rnorm(1,simvec[i-1]+a*dt,b*sqrt(dt))
}

simvec
}

Plot the path with

plot(ts(genbm(),start=0,deltat=0.01))

Figure 3 shows a single simulated realisation of a standard B.M. viewed at decreasing
sampling intervals. Note that as �t ! 0, the true process is obtained. Figure 4 shows 4
simulated realisations with varying drift a and di↵usion b

2. Clearly, increasing a shifts the
trajectory up (proportional to time) and increasing b causes the trajectory to vary more
about its mean.
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Figure 3: 1 simulated realisation of a standard B.M. with sampling frequency (a) �t = 1,
(b) �t = 0.5, (c) �t = 0.1 and (d) �t = 0.01.

2.2 Lognormal distribution

In order to formulate a more realistic model of stock price we will first review the Lognormal
distribution. Note that in this course, log = loge = ln.

Let Y be a Lognormal random variable with parameters m and v
2. Then, we write Y ⇠

LN(m, v
2) with pdf

fY (y) =
1

y
p
2⇡v2

exp

⇢
�(log(y)�m)2

2v2

�
y > 0 .

The expectation of Y is
E(Y ) = e

m+ 1
2v

2
(3)

and the variance of Y is
Var(Y ) = e

2m+v2
⇣
e
v2 � 1

⌘
. (4)

Note that if Y ⇠ LN(m, v
2), then log(Y ) ⇠ N(m, v

2). Or, equivalently, if X ⇠ N(m, v
2),

then Y = exp(X) ⇠ LN(m, v
2). We can therefore obtain (3) and (4) by considering the

moment generating function (mgf) of a N(m, v
2) random variable, say X. Recall that this

mgf (with arbitrary argument t) is

MX(t) = E
�
e
tX
�
= e

mt+ 1
2v

2t2
.
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Figure 4: 4 simulated realisations of a generalised B.M. with (a) a = 0.1, b = 1 (b) a = �0.1,
b = 1 (c) a = 0, b = 0.1 and (d) a = 0, b = 2.

Hence we obtain
E (Y ) = E

�
e
X
�
= MX(1) = e

m+ 1
2v

2
.

The variance is obtained by first calculating E(Y 2) = MX(2) and then using

Var(Y ) = E(Y 2)� {E(Y )}2 .

We can plot the density of Y for a range of m and v with the commands

y=seq(0,4,0.1)
plot(y,dlnorm(y,0,1),type="l",ylim=c(0,2))
lines(y,dlnorm(y,1,sqrt(2)),type="l")
lines(y,dlnorm(y,-1,1),type="l")

for which we obtain the Figure 5. Can you match up the distributions and their pdfs? Note
that the pdfs are right skewed. Moreover, we have that

mode(Y ) = e
m�v2

< med(Y ) = e
m

< E(Y ) = e
m+ 1

2v
2
.
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Figure 5: LN(0, 1), LN(1, 2), LN(�1, 1) pdfs

Finally note that the pdf fY (y) of a Lognormal random variable Y ⇠ LN(m, v
2) can be

obtained from the pdf of a Normal random variable X ⇠ N(m, v
2) as follows. Start with

the cummulative distribution function of Y ,

Pr(Y  y) = Pr(log(Y )  log(y))

= Pr(X  log(y)) where X ⇠ N(m, v
2)

= Fx(log(y)) where Fx(·) denotes the cdf of X.

Di↵erentiating with respect to y gives the pdf of Y as

fY (y) = fX(log(y))⇥
1

y

=
1

y
p
2⇡v2

exp

⇢
�(log(y)�m)2

2v2

�
, y > 0

as required.
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2.3 Geometric Brownian Motion

We have considered (generalised) Brownian motion as a model for cash position but not
as a model for stock price. In fact, it would appear that (generalised) B.M. has two major
flaws when used to model stock price:

1. When using B.M. the price of a stock would be a Normal random variable, and so it
could be negative.

2. The assumption that the price di↵erence over an interval of fixed length has the
same Normal distribution no matter what the price at the beginning of the interval
doesn’t seem reasonable. For example, many people do not think that the probability
a stock currently selling at 20 would drop to 15 or less (a loss of 25% or more)
in one month should be the same as the the probability of a stock currently at 10
dropping to 5 or less in one month (a loss of 50% or more). Under generalised B.M.
Pr(Xt < 15|Xs = 20) = Pr(Xt < 5|Xs = 10) = Pr(Xt �Xs = �5).

The geometric Brownian motion model has neither of these flaws. Let us see why.

Definition 2.3

A continuous time stochastic process {St, t � 0} is called a geometric Brownian motion
(G.B.M.) (with parameters µ and �

2) if each path t ! St is a continuous positive function
of t and

(1) S0 > 0 is fixed,
(2) For all 0  t1 < t2 < 1 the r.v. St2/St1 is independent of {Su, u  t1},
(3) For all 0  t1 < t2 < 1 the r.v. log (St2/St1) is normally distributed with mean�

µ� 1
2�

2
�
(t2 � t1) and variance �

2(t2 � t1).

Important properties / comments

• When modelling stock price with G.B.M., the logarithm of the stock’s price is a
Normal random variable and so the model does not allow for negative stock prices.

• Since ratios of prices separated by a fixed length of time have the same distribution,
G.B.M. makes the more reasonable assumption that it is the percentage change in
price (and not the absolute change) whose probabilities do not depend on the present
price.

• µ is known as the mean rate of return or expected rate of return and �
2 is the volatility.
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• Let Y = St/Su (for times u < t). Then Y follows the Lognormal distribution (and
taking the log of St/Su results in a Normal random variable with mean (µ��

2
/2)(t�u)

and variance �
2(t� u)).

• Using equation (3) with m = (µ � �
2
/2)(t � u) and v

2 = �
2(t � u), the expectation

of Y is
E(Y ) = e

µ(t�u)
. (5)

• Using equation (4), the variance of Y is

Var(Y ) = e
2µ(t�u)

⇣
e
�2(t�u) � 1

⌘
. (6)

• The quantity

⌘ =
1

t
log

✓
St

S0

◆

is known as the continuously compounded rate of return (or simply the return) realised
between times 0 and t, and is so called since rearranging ⌘ gives

St = S0e
⌘t
.

• G.B.M. (with parameters µ and �
2) is related to the standard B.M. via the formula

St = Su exp

⇢✓
µ� 1

2
�
2

◆
(t� u) + � (Wt �Wu)

�
u < t, S0 > 0 fixed. (7)

Rewriting equation (7) with u = 0 gives

St = exp(Xt), Xt = x0 +

✓
µ� 1

2
�
2

◆
t+ �Wt.

That is, Xt is a generalised Brownian motion with initial value x0 = log(S0), drift
a = µ� �

2
/2 and di↵usion coe�cient b2 = �

2.

We can show that equation (7) defines a G.B.M. by checking Definition 2.3. The continuity
of sample paths of Wt gives continuity of sample paths of exp(Xt). Now note that

1. S0 = exp(x0) which is a fixed, positive value.

2. For all times 0  t0 < t1 < t2 < 1,

St1

St0

= exp{(µ� 0.5�2)(t1 � t0) + �(Wt1 �Wt0)}

and
St2

St1

= exp{(µ� 0.5�2)(t2 � t1) + �(Wt2 �Wt1)}.

Now, independence of the Brownian increments on the RHS gives independence of
the ratios on the LHS.
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3. For all times 0  t0 < t1 < 1,

log

✓
St1

St0

◆
= (µ� 0.5�2)(t1 � t0) + �(Wt1 �Wt0)

which, using Wt1 �Wt0 ⇠ N(0, t1 � t0) gives

log

✓
St1

St0

◆
⇠ N

�
(µ� 0.5�2)(t1 � t0) , �

2(t1 � t0)
�

as required.

Example 2.3

Suppose that the price of a particular stock follows a G.B.M. {St, t � 0} with mean rate
of return µ = 0.01 per year and volatility �

2 = 0.04 per year. If the initial price of stock is
100, find:

(a) E(S10);

(b) Pr(S10 > 100).

Solution

(a) We require

E(S10) = E

✓
S10

S0
⇥ S0

◆

= S0E(Y )

where Y = S10/S0 follows a log-Normal distribution and so we can apply equation
(5). We obtain

E(S10) = 100eµ(10�0) = 100e0.1 .

Note that in general,
E(St) = S0e

µt

so the expected price grows like a fixed-income security with continuously compounded
interest rate µ. This is why we call µ the rate of return.

(b) We have

Pr(S10 > 100) = Pr

✓
S10

S0
>

100

S0

◆

= Pr

✓
log

✓
S10

S0

◆
> log(1)

◆

= Pr(X > 0) where X ⇠ N
�
(µ� 0.5�2)10 , �210

�
⌘ N(�0.1, 0.4)
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Hence we obtain

Pr(S10 > 100) = Pr

✓
Z >

0.1p
0.4

◆
where Z ⇠ N(0, 1)

= 0.437

Example 2.4

Consider a stock with an initial price of 40, an expected return of 16% per annum, and a
volatility of 4% per annum. Calculate a 95% confidence interval for the stock price in 6
months time, S0.5.

Solution

Identify µ = 0.16 and � = 0.2. Now, we know that

log

✓
S0.5

S0

◆
⇠ N

�
(0.16� 0.22/2)⇥ 0.5, 0.22 ⇥ 0.5

�

) log

✓
S0.5

S0

◆
⇠ N(0.07, 0.02)

Hence, with 95% confidence,

0.07� 1.96⇥
p
0.02 < log

✓
S0.5

S0

◆
< 0.07 + 1.96⇥

p
0.02

) log(40)� 0.207 < log(S0.5) < log(40) + 0.347

) 32.52 < S0.5 < 56.59

2.3.1 Simulating/Visualising Geometric Brownian Motion

Just as with Brownian motion, we can simulate a skeleton of a sample path of geometric
Brownian motion by discretising time and using equation (7). As before, split [0, T ] into
n + 1 equidistant points 0 = t0 < t1 < . . . tn = T . Let ti+1 � ti = �t = T/n. Perform the
following sequence of steps:-

1. Initialise S0 = s0. Put i := 1

2. Simulate Wti �Wti�1 ⇠ N(0,�t)

3. Put Sti = sti�1 exp
��

µ� 1
2�

2
�
�t+ �

�
Wti �Wti�1

� 
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4. If ti = T , stop otherwise put i := i+ 1 and go to step 2.

The following R function takes as arguments T , �t, s0, µ and �, and returns a skeleton
path of a generalised B.M.

gbm=function(T=20,dt=0.01,s0=40,mu=0.1,sig=0.2)
{
n=T/dt
simvec=vector("numeric",len=n+1)
simvec[1]=s0
for(i in 2:(n+1))
{
simvec[i]=simvec[i-1]*exp((mu-0.5*sig*sig)*dt+sig*rnorm(1,0,sqrt(dt)))

}
simvec

}

Plot the path with

plot(ts(gbm(),start=0,deltat=0.01))

Figure 6 shows two simulated realisations of a geometric B.M.
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Figure 6: 2 simulated realisations of a geometric B.M. with s0 = 40, µ = 0.1 and � = 0.2.

2.3.2 G.B.M. as a limit of simpler models (not examinable)

Partition the interval [0, T ] into n equal subintervals of size �t = T/n and consider a
Binomial model for the price of a stock. That is, every �t time units, the price either goes
up by a factor u with probability p or goes down by a factor of d with probability 1 � p.
Fix µ and � and set

u = e
�
p
�t
, d = e

��
p
�t

,
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p =
1

2

⇣
1 +

⇣
µ

�
� �

2

⌘p
�t

⌘
.

Now define a random variable Yi taking the value 1 if the price goes up at time i�t and 0
if the price goes down. Plainly, the number of times the price goes up (in the first n time
increments) is

Pn
i=1 Yi and the number of times it goes down is n �

Pn
i=1 Yi. Hence, the

stock price at time T can be expressed as

ST = S0u

Pn
i=1 Yid

n�
Pn

i=1 Yi

= S0d
n
⇣
u

d

⌘Pn
i=1 Yi

.

Dividing by S0 and taking logarithms gives

log

✓
ST

S0

◆
= n log(d) + log

⇣
u

d

⌘ nX

i=1

Yi

=
�T�p
�t

+ 2�
p
�t

T/�tX

i=1

Yi . (8)

after using n = T/�t and the definitions of u and d. Now, taking smaller and smaller
intervals, �t ! 0, is equivalent to taking n ! 1 and hence by the central limit theorem,Pn

i=1 Yi becomes increasingly Normal. This implies that ln(ST/S0) in equation (8) becomes
a Normal random variable. Taking expectations

E


log

✓
ST

S0

◆�
=

�T�p
�t

+ 2�
p
�t

T/�tX

i=1

E(Yi)

=
�T�p
�t

+ 2�
p
�t

T

�t
p

=
�T�p
�t

+
T�p
�t

⇣
1 +

⇣
µ

�
� �

2

⌘p
�t

⌘

=

✓
µ� �

2

2

◆
T .

For the variance, we obtain

Var


log

✓
ST

S0

◆�
= 4�2�t

T/�tX

i=1

Var(Yi)

= 4�2
Tp(1� p)

⇡ �
2
T since p ⇡ 1/2 for small �t .

Hence, we have shown that taking a simple Binomial model (of stock price) with smaller
and smaller time periods results in the geometric Brownian motion. We can also verify this
empirically. Consider the following R function that takes as arguments S0, µ, �, T and �t,
and returns a simulated value of log(ST/S0), by simulating from the Binomial model.
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bin=function(T=2,dt=0.1,s0=40,mu=0.1,sig=0.2)
{
n=T/dt
sdt=sqrt(dt)
u=exp(sig*sdt)
d=exp(-sig*sdt)
p=0.5*(1+(mu/sig-sig/2)*sdt)
s=s0
k=rbinom(1,n,p)
s=s*u^(k)*d^(n-k)
log(s/s0)

}

Consider an example with T = 2, µ = 0.1 and � = 0.2. For a Binomial model with ’small’
time intervals, we should expect the distribution of ln(S2/S0) to be (approximately) Normal
with mean (µ� 0.5�2)T = 0.16 and variance �2

T = 0.08. The following function generates
a predetermined number of simulated values of log(S2/S0),

bin2=function(T=2,dt=0.1,s0=40,mu=0.1,sig=0.2,sim=1000)
{
simvec=vector("numeric",len=sim)
for(i in 1:sim){
simvec[i]=bin(T,dt,s0,mu,sig)

}
simvec

}

and we can then plot a histogram of these simulated values with

hist(bin2(),freq=F)

Figure 7 provides 4 such histograms generated with decreasing �t.

2.3.3 Black-Scholes Pricing

In the final part of this Section, we derive the well known Black-Scholes formula, which
gives (under the assumption that the price of a security evolves according to a G.B.M.) the
unique no-arbitrage cost of a call option. The theory was developed in the early 1970s and
its importance recognised in 1997, with the award of a Nobel prize for economics.
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Figure 7: Histograms of 1000 simulations of log(S2/S0) from the binomial model with
µ = 0.1, � = 0.2 and time intervals of (a) �t = 0.2, (b) �t = 0.1, (c) �t = 0.01 and (d)
�t = 0.005. Plot (d) includes an overlay of the N(0.16, 0.08) density.

Consider an ECC with payo↵ g(ST ) at time T . The no arbitrage fair price of this ECC is

e
�rTE {g(ST )}

where E(·) should be an appropriate risk-neutral expectation. That is

“the discounted expected payo↵ at time T”.

The motivation for this form of fair price is probably best understood in the context of
gambling. It is helpful to imagine the payo↵ of the ECC as your total fortune at time T

after gambling in a “fair” game. One might then expect the fair price for entering the game
to be the expected payo↵ at time T . To take into account the money market, we multiply
by the discount factor, e�rT .

The simplest ECC has payo↵ ST at time T . The fair price is therefore

e
�rTE(ST ) = S0 (9)

since for no-arbitrage, the fair price of the ECC must coincide with its value at time 0.
Under assumption of GBM,

E(ST ) = S0e
µT

and we therefore must take µ = r for (9) to be satisfied. A G.B.M. with µ = r is known
as risk neutral G.B.M. Under the risk-neutral G.B.M., log(ST/S0) is Normal with mean
(r � �

2
/2)T and variance �

2
T .
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Hence, the unique no-arbitrage cost, C0, of a European call option with maturity T and
strike price K is the discounted expected payo↵ at time T ,

C0 = e
�rTE

⇥
(ST �K)+

⇤

= e
�rTE

⇥
(S0e

W �K)+
⇤

where W is a Normal random variable with mean (r � �
2
/2)T and variance �

2
T . This

equation can be explicitly evaluated to give the Black-Scholes option pricing formula.

Result 2.1 (Black-Scholes formula)

Under the assumption of R-N G.B.M., the fair price of a European call option with maturity
T and strike price K is

C0 = S0�(!)�Ke
�rT�(! � �

p
T ), where ! =

rT + �
2
T/2� log(K/S0)

�
p
T

(10)

and �(·) is the standard Normal distribution function. Recall that log is base e.

Derivation of the Black-Scholes price (not examinable)

Let I be an indicator variable taking the value 1 if ST > K and 0 otherwise. By definition
of the fair price C0 of the European call option,

C0 = e
�rTE

�
[ST �K]+

�

= e
�rTE (max[0, ST �K])

= e
�rTE (I ⇥ [ST �K])

where I is the indicator variable defined above. Hence we obtain

C0 = e
�rTE [I ⇥ ST ]�Ke

�rTE [I] .

We now calculate the expectation of the indicator variable,

E [I] = 1⇥ Pr(ST > K) + 0⇥ Pr(ST  K)

= Pr(ST > K)

= Pr

✓
log


ST

S0

�
> log


K

S0

�◆

where log
h
ST
S0

i
⇠ N([r � �

2
/2]T, �2

T )

= Pr

✓
Z >

log(K/S0)� [r � �
2
/2]T

�
p
T

◆
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where Z ⇠ N(0, 1)

= Pr

✓
Z <

[r � �
2
/2]T � log(K/S0)

�
p
T

◆
.

Now note that

! � �

p
T =

rT + �
2
T/2� log(K/S0)

�
p
T

� �
2
T

�
p
T

=
[r � �

2
/2]T � log(K/S0)

�
p
T

.

Hence,

E [I] = �(! � �

p
T )

where �(·) denotes the CDF of a standard Normal random variable.

Now we just need E [I ⇥ ST ]. We start by writing ST as

ST = S0 exp
n
(r � �

2
/2)T + �

p
TZ

o

where Z ⇠ N(0, 1). We can then write our indicator variable as

I =

⇢
1, ST > K

0, otherwise
=

⇢
1, Z > �

p
T � !

0, otherwise

Hence

E [I ⇥ ST ] =

Z 1

�
p
T�!

S0 exp
n
(r � �

2
/2)T + �

p
Tz

o
fZ(z)dz

=

Z 1

�
p
T�!

S0 exp
n
(r � �

2
/2)T + �

p
Tz

o 1p
2⇡

e
�z2/2

dz

=
1p
2⇡

S0 exp
�
(r � �

2
/2)T

 Z 1

�
p
T�!

exp
n
�(z2 � 2�

p
Tz)/2

o
dz

=
1p
2⇡

S0e
rT

Z 1

�
p
T�!

exp
n
�(z � �

p
T )2/2

o
dz (completing the square)

= S0e
rT 1p

2⇡

Z 1

�!

e
�y2/2

dy by letting y = z � �

p
T

= S0e
rT
Pr(Z > �!)

= S0e
rT�(!) (by symmetry of the Normal pdf).
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Hence we obtain

C0 = e
�rTE [I ⇥ ST ]�Ke

�rTE [I]

= e
�rT

S0e
rT�(!)�Ke

�rT�(! � �

p
T )

= S0�(!)�Ke
�rT�(! � �

p
T )

as required.

Comments

• Let C0 and P0 be the respective no-arbitrage costs of a European call and put option
each with strike price K and maturity T . It follows from the put-call option parity
formula (see Section 1) that P0 is given by

P0 = C0 +Ke
�rT � S0 . (11)

• Note that the no-arbitrage cost of the option depends on the underlying Brownian
motion only through its volatility �

2 (since r is known). In other words, to find the
fair price of an option, we need only estimate �

2.

Example 2.5

Consider an option with strike price K = 29 (in pounds) and maturity T = 4 months.
Suppose that the current price of stock is S0 = 30, the risk free interest rate is 5% and the
volatility is 6.25% per annum.

(a) What is the price of the option if it is a European call?

(b) What is the price of the option if it is a European put?

Solution

(a) Identify T = 1/3, r = 0.05, �2 = 0.0625, � = 0.25. Let C0 denote the price of the
European call. Define P0 similarly. Using the Black-Scholes formula (10) we have

! = 0.4225

) C0 = 30�(0.4225)� 29e�0.05⇥1/3�(0.4225� 0.25
p

1/3)

= 2.53 .

Hence the no-arbitrage price of the European call is £2.53.
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(b) Using the put-call parity formula given by (11),

P0 = 2.53 + 29e�0.05⇥1/3 � 30

= 1.05 .

Hence the no-arbitrage price the European put is £1.05.

Properties of the Black-Scholes price

We have the following properties of the Black-Scholes price C0:

1. C0 is an increasing function of S0. This means that if the other four variables
(T,K, �, r) remain the same, then the no-arbitrage cost of the option is an increasing
function of the security’s initial price. Showing this to be the case will be left as an
exercise.

2. C0 is a decreasing function of K. Showing this to be the case will be left as an
exercise.

3. C0 is increasing in T . A mathematical argument can be given but is beyond the scope
of the course.

4. C0 is increasing in �. This at first might seem intuitive since the option holder
will benefit from large prices at maturity time, while any additional price decrease
below the strike price will not cause any additional loss. However, we must note that
increasing � also results in a decrease in the mean of an asset’s price (under GBM).
Nevertheless the result is true but a mathematical proof is beyond the scope of the
course.

5. C0 is increasing in r. Showing this to be the case will be left as an exercise.
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