
5 An Introduction to Itô Calculus

In this final Section, we introduce a further type of stochastic process known as
an Itô process. We have already met two such processes – Brownian motion and
geometric Brownian motion. Here, we will formulate such models as stochastic
differential equations (S.D.E.s) and develop a framework for working with these
processes.

5.1 The Itô Integral

Assume that stock price follows a G.B.M. with parameters µ and σ2. Suppose
that we are interested in the behaviour of stock price in the interval [t, t+∆t].
Using the relationship between G.B.M. and B.M., we can express the change in
the logarithm of an assets price as

log(St+∆t)− log(St) = (µ− σ2/2)∆t+ σ(Wt+∆t −Wt)

where Wt is standard Brownian motion. Assuming zero volatility (i.e. σ2 = 0)
we have

log(St+∆t)− log(St)

∆t
= µ

⇒ d log(St)

dt
= µ upon taking ∆t → 0.

In other words, the change in the logarithm of an asset’s price is constant. Note
that solving the above ordinary differential equation (ODE) system gives

St = S0e
µt

which we may have anticipated, since this is also the expectation of St when σ
is non zero. What if we don’t assume zero volatility? Clearly,

log(St+∆t)− log(St)

∆t
= µ− σ2/2 + σ

Wt+∆t −Wt

∆t
.

We would like to take the limit (as ∆t → 0) of both sides and write dWt/dt on
the RHS. However, although sample paths of Wt are continuous functions of t,
they are almost everywhere non-differentiable. To see this, note the difference
quotient

Wt+∆t −Wt

∆t
is not bounded in the neighbourhood of t. Intuitively, the variance of the dif-
ference quotient explodes as ∆t → 0. Consequently, dWt/dt has no meaning in
the usual sense. In particular, the Riemann integral∫ t

0

g(τ)
dWτ

dτ
dτ

has no meaning since dWτ/dτ is not defined. Therefore, a new definition of a
stochastic integral is needed.

Let g(t) be a function of time, where t ∈ [a, b]. We define the Itô stochastic
integral for functions g satisfying∫ b

a

g2(t) dt < ∞ .
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Definition 5.1 (Itô Stochastic Integral)

Partition [a, b] as a = t0 < t1 < . . . < tn−1 < tn = b and set ∆t = ti+1 − ti =
(b− a)/n, ∆Wti = Wti+1 −Wti . The Itô stochastic integral of g is defined as∫ b

a

g(t) dWt = l.i.m.n→∞

n−1∑
i=0

g(ti)∆Wti ,

where l.i.m. denotes mean square convergence. In other words, ifGn =
∑n−1

i=0 g(ti)∆Wti

and I =
∫ b

a
g(t) dWt then l.i.m.n→∞Gn = I means that

lim
n→∞

E[(Gn − I)2] = 0 .

Simple Itô integrals

Simple Itô stochastic integrals can be verified directly from the Definition 5.1.
For example taking g(t) = 1 gives∫ b

a

dWt = l.i.m.n→∞

n−1∑
i=0

∆Wti

= l.i.m.n→∞(Wt1 −Wt0 +Wt2 −Wt1 + . . .+Wtn −Wtn−1
)

= l.i.m.n→∞(Wtn −Wt0)

= Wb −Wa .

where the last line follows since t0 = a and tn = b irrespective of the partition.
Similarly, taking a = 0 and b = t gives∫ t

0

dWτ = Wt −W0 = Wt

since W0 = 0 and we used τ as a dummy variable for time since t is the upper
limit of the integral. Now take g(t) = k for some constant k to see that∫ t

0

kdWτ = k(Wt −W0) = kWt.

Comments

• Solutions of Itô integrals are stochastic processes.

• Note that a general Itô stochastic integral of the form

Xt = X0 +

∫ t

0

g(τ)dWτ

can be written in differential form as

dXt = g(t)dWt .

This latter form is called the stochastic differential representation of Xt.
In the following section we will generalise this construct.
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5.2 Stochastic Differential Equations (S.D.E.s)

Definition 5.2

A stochastic process Xt is said to satisfy an Itô stochastic differential equation
(S.D.E.), if we may write

dXt = α(t,Xt) dt+ β(t,Xt) dWt .

Comments

• The corresponding integral representation is

Xt = X0 +

∫ t

0

α(τ,Xτ ) dτ +

∫ t

0

β(τ,Xτ ) dWτ .

• Note that the first integral above is the usual Riemann integral and the
second is an Itô stochastic integral.

• The α term is known as the drift coefficient and β2 as the diffusion coef-
ficient.

• If α(t,Xt) and β(t,Xt) do not depend explicitly on t then the S.D.E. is
said to be time-homogeneous.

Simple S.D.E.s

• Suppose that X0 = 0, α(t,Xt) = 0 and β(t,Xt) = 1. Then

dXt = dWt.

Integrating both sides of the above between 0 and t gives∫ t

0

dXτ =

∫ t

0

dWτ

⇒ Xt −X0 = Wt −W0

for which we see that using X0 = 0 and W0 = 0 gives Xt = Wt, a standard
Brownian motion process.

• Take X0 = x0, α(t,Xt) = a and β(t,Xt) = b where x0, a and b are real
numbers. The resulting S.D.E. is

dXt = a dt+ b dWt .

Integrating both sides of the above between 0 and t gives∫ t

0

dXτ =

∫ t

0

adτ + b

∫ t

0

dWτ

⇒ Xt −X0 = at+ b(Wt −W0)

for which we obtain
Xt = x0 + a t+ bWt

and we recognise Xt as a generalised Brownian motion process.
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• We would like to be able to write down a S.D.E. for the stock price process
St, assuming it follows a geometric B.M. We know that St = exp(Xt)
where Xt is a generalised Brownian motion with initial condition logS0,
drift µ − σ2/2 and diffusion coefficient σ2 and we know dXt. Hence, we
just need a way of differentiating exp(Xt) in a sensible way. Essentially,
we need a chain rule for S.D.E.s. This chain rule is the Itô Formula.

5.2.1 Itô Formula

Consider an S.D.E. of the form

dXt = α(t,Xt) dt+ β(t,Xt) dWt .

Let G(t, x) be a real valued function with continuous partial derivatives

Gt = Gt(t, x) =
∂G

∂t
, Gx = Gx(t, x) =

∂G

∂x
, Gxx = Gxx(t, x) =

∂2G

∂x2
,

then

dG(t,Xt) =

(
Gt(t,Xt) + α(t,Xt)Gx(t,Xt) +

1

2
β2(t,Xt)Gxx(t,Xt)

)
dt+

+β(t,Xt)Gx(t,Xt) dWt .

Sketch proof (not examinable)

To give an indication of why this is the case, write

dG(t, x) ≈ G(t+∆t, x+∆x)−G(t, x) .

Now take a Taylor series expansion of G(t+∆t, x+∆x) about (t, x) to give

dG(t, x) ≈ ∆tGt +∆xGx +
1

2
(∆t)2 Gtt +

1

2
∆t∆xGtx +

1

2
(∆x)2 Gxx + . . .

where Gtt = ∂2G/∂t2 and Gtx = ∂2G/∂t∂x. Now replace ∆x with α∆t+β∆W
and (∆x)2 by α2(∆t)2 + 2αβ∆t∆W + β2(∆W )2 to obtain

dG(t, x) ≈ ∆tGt + (α∆t+ β∆W )Gx +
1

2
(∆t)2 Gtt +

1

2
(α(∆t)2 + β∆t∆W )Gtx +

+
1

2
(α2(∆t)2 + 2αβ∆t∆W + β2(∆W )2)Gxx + . . .

Now approximate (∆W )2 by ∆t (and note in fact that E[(∆W 2)] = ∆t) to write
the preceding expression as

dG(t, x) ≈
(
Gt + αGx +

β2

2
Gxx

)
∆t+ βGx∆W + o(∆t) .

Itô’s formula then follows by letting ∆t → 0. The above sketch proof is not
examinable.
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Comments

• We can write down Itô’s formula for a function of Brownian motion Wt

by noting that Wt satisfies an S.D.E. with Xt = Wt, α(t,Xt) = 0 and
β(t,Xt) = 1. Hence for a function G(t,Wt) we obtain

dG(t,Wt) =

(
Gt(t,Wt) +

1

2
Gxx(t,Wt)

)
dt+Gx(t,Wt) dWt . (1)

This is known as the special case of Itô formula and is appropriate for
deriving the S.D.E. satisfied by a function of t and Wt.

Example 5.1 (Two applications of Itô formula)

Deriving the S.D.E. satisfied by G.B.M.

Consider again the task of formulating geometric Brownian motion (to model
stock price St) as an S.D.E. We can write St = exp(Xt) where

Xt = X0 +

(
µ− σ2

2

)
t+ σWt

and X0 = log(S0). The S.D.E. satisfied by the Xt process is then given by

dXt =

(
µ− σ2

2

)
dt+ σ dWt .

Hence, we derive an S.D.E. for St by applying Itô’s formula with G(t, x) = ex.
Identify

Gt = 0 , Gx = ex , Gxx = ex .

Hence
Gt(t,Xt) = 0 , Gx(t,Xt) = eXt , Gxx(t,Xt) = eXt

and applying Itô’s formula gives

d
(
eXt
)

=

([
µ− σ2

2

]
eXt +

1

2
σ2eXt

)
dt+ σeXt dWt

⇒ d
(
eXt
)

= µeXt dt+ σeXt dWt .

Now, writing St = eXt , we obtain the usual S.D.E. for geometric Brownian
motion as

dSt = µSt dt+ σSt dWt .

Solving the S.D.E. satisfied by G.B.M.

We can solve the above S.D.E. explicitly (in the sense that we can obtain a
closed form expression for St). Take the S.D.E. satisfied by G.B.M. and write

1

St
dSt = µdt+ σ dWt ,

⇒
∫ t

0

1

Sτ
dSτ =

∫ t

0

µdτ + σ

∫ t

0

dWτ ,
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which suggests that the solution involves log(St). We can check this hunch via
Itô formula. Apply the Itô formula to log(St) by taking G(t, x) = log(x) and
identify

Gt(t, St) = 0 , Gx(t, St) =
1

St
, Gxx(t, St) = − 1

S2
t

.

Hence,

d (log(St)) =

(
µSt

1

St
− 1

2
S2
t

σ2

S2
t

)
dt+ σSt

1

St
dWt

=

(
µ− 1

2
σ2

)
dt+ σ dWt .

Our hunch is just about correct, except for the extra term involving σ2 appearing
on the RHS. Nevertheless, we may still proceed by integrating both sides of the
preceding equation to give∫ t

0

d (log(Sτ )) =

∫ t

0

(
µ− 1

2
σ2

)
dτ +

∫ t

0

σ dWτ

⇒ log

(
St

S0

)
=

(
µ− 1

2
σ2

)
t+ σWt

⇒ St = S0 exp

{(
µ− 1

2
σ2

)
t+ σWt

}
which is exactly what we would expect.

Example 5.2

Using Itô’s formula, solve ∫ t

0

Wτ dWτ .

Solution

We would expect the solution to the above integral to contain a W 2
t term. There-

fore we find d(W 2
t ) via Itô’s formula for functions of Brownian motion, given

by equation (1).
Set G(t, x) = x2 and calculate

Gt(t,Wt) = 0 , Gx(t,Wt) = 2Wt , Gxx(t,Wt) = 2 .

Hence, we obtain

d(W 2
t ) = dt+ 2Wt dWt

⇒ Wt dWt =
1

2
d(W 2

t )−
1

2
dt

⇒
∫ t

0

Wτ dWτ =
1

2

∫ t

0

d(W 2
τ )−

1

2

∫ t

0

dτ

=
1

2
W 2

t − 1

2
t .
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Example 5.3

Show that Yt = t3 + t2W 4
t is an Itô process by writing it in the form

dYt = αt dt+ βt dWt

for suitable choices of the processes αt and βt.

Solution

We use the special case of Itô’s formula (1) with G(t, x) = t3 + t2x4. Hence

Gt(t,Wt) = 3t2 + 2tW 4
t , Gx(t,Wt) = 4t2W 3

t , Gxx(t,Wt) = 12t2W 2
t

and we get

d(t3 + t2W 4
t ) = dYt =

(
3t2 + 2tW 4

t + 6t2W 2
t

)
dt+ 4t2W 3

t dWt

which is in the form required.

5.3 Solving S.D.E.s numerically

Consider the task of generating a skeleton path on [0, T ] of a process satisfying
an S.D.E. of the form given by

dXt = α(t,Xt) dt+ β(t,Xt) dWt .

This would typically involve solving the S.D.E. analytically to obtain the tran-
sition density, and then simulating using this density. For example, a Gaussian
transition density is obtained for generalised B.M. and a log-normal transition
density is obtained for geometric B.M. However, for all but the most trivial
of cases, solving the S.D.E. is impossible. We therefore seek to approximate
a skeleton sample path of Xt by a single realisation of a numerical solution;
although many types of numerical solution exist, only the simplest scheme, the
Euler-Maruyama method, is considered here. For a small time increment ∆t,
the first order Euler-Maruyama approximation of the above S.D.E. is

∆Xt = α(t,Xt)∆t + β(t,Xt)∆Wt ,

where ∆Wt = (Wt+∆t − Wt) ∼ N(0,∆t). A sample path is then constructed
by dividing the time interval [0, T ] into n equidistant points, 0 = t0 < t1 <
. . . < tn = T (so that ∆t = ti+1 − ti and ∆Wti = Wti+∆t − Wti). Denoting
the numerical solution at times t0, . . . , tn by X0, . . . , Xn and using the equation
directly above yields the recursion,

Xi = Xi−1 +α(ti−1, Xi−1)∆t+ β(ti−1, Xi−1)∆Wti−1 , Xt0 = X0 , i = 1, . . . , n .
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Algorithmically:-

1. Initialise with X0. Put i := 1

2. Simulate Xi ∼ N(Xi−1 + α(ti−1, Xi−1)∆t , β2(ti−1, Xi−1)∆t)

3. If ti = T , stop otherwise put i := i+ 1 and go to step 2.

As an example, consider the S.D.E. formulation of a geometric Brownian motion
process (denoted by Xt here),

dXt = µXt dt+ σXt dWt .

To make the distinction between the exact solution and an approximate solution
(obtained via Euler-Maruyama), consider a time interval [t, t+∆t] and suppose
that we have Xt = xt at time t. The analytic solution over this time interal is

Xt+∆t = xt exp
{
(µ− σ2/2)∆t+ σ(Wt+∆t −Wt)

}
for which we see

Xt+∆t|Xt = xt ∼ LN
(
log xt + (µ− σ2/2)∆t , σ2∆t

)
.

The Euler-Maruyama approximation gives

Xt+∆t = xt + µxt∆t+ σxt(Wt+∆t −Wt)

for which we see

Xt+∆t|Xt = xt ∼ N
(
xt + µxt∆t , σ2x2

t∆t
)
.

Although beyond the scope of the course, taking the power series characterisa-
tion of the exponential function and truncating terms can be used to obtain the
Euler-Maruyama approximation from the analytic solution.

The following suite of R functions generate a numerical solution to the S.D.E.
formulation of geometric Brownian motion:

itosim=function(T=20,dt=0.01,x0=40,afun=alpha,bfun=beta)

{

n=T/dt

xvec=vector("numeric",n+1)

xvec[1]=x0

for(i in 2:(n+1))

{

t=i*dt

xvec[i]=xvec[i-1]+afun(xvec[i-1],t)*dt+bfun(xvec[i-1],t)*rnorm(1,0,sqrt(dt))

}

xvec

}

alpha=function(x,t)

{

mu=0.1

mu*x

8



}

beta=function(x,t)

{

sigma=0.2

sigma*x

}

Note that this flexible setup allows us to simulate from any (univariate) S.D.E.
simply by re-writing the alpha and beta functions. The main itosim function
remains unchanged. We plot the numerical solution with

plot(ts(itosim(),start=0,deltat=0.01))
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Figure 1: 2 simulated realisations of a geometric B.M. with x0 = 40, µ = 0.1
and σ = 0.2 found by numerically solving the S.D.E.

Comment

• Taking ∆t smaller and smaller gives increased accuracy at greater com-
putational expense.

5.3.1 Assessing the accuracy of the Euler-Maruyama scheme (not
examinable)

Suppose that we’re interested in the accuracy of the numerical scheme at some
(maturity) time T . Let X∆t

T denote the Euler-Maruyama approximation of XT

at time T , based on a discretisation (step-size) of ∆t.
The numerical scheme is strongly convergent if

lim
∆t→0

E
(
|XT −X∆t

T |
)
= 0.

The numerical scheme is weakly convergent if

lim
∆t→0

∣∣E{g(XT )} − E{g(X∆t
T )}

∣∣ = 0

for polynomials g(·).
The Euler-Maruyama scheme is strongly and weakly convergent subject to

suitable conditions on the drift and diffusion coefficient. We may also wonder
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how good the approximation is for a particular ∆t. The numerical scheme is
strongly convergent with order δ if

E
(
|XT −X∆t

T |
)
≤ CT (∆t)δ

where the constant CT depends on T and the considered SDE. The numerical
scheme is weakly convergent with order δ if∣∣E{g(XT )} − E{g(X∆t

T )}
∣∣ ≤ Cg

T (∆t)δ

where Cg
T depends on T , g and the considered SDE. If a numerical scheme

is convergent with order δ and we make the step size k times smaller, the
approximation error will decrease by a factor kδ.

The Euler-Maruyama scheme is weakly convergent with order 1 and strongly
convergent with order 0.5. Therefore, the order equal 1 means that if we want to
decrease the error 100 times, we have to make the step 100 times smaller. The or-
der equal to 0.5 means that if we want to decrease the error 100 times, we have to
make the step 1002 = 10000 times smaller. Consequently, the Euler-Maruyama
scheme is useful for pricing options whose payoff is not path-dependent. Where
the payoff is path-dependent, a higher order scheme (e.g. the Milstein scheme)
should be used.
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5.4 Models of Interest Rate

Interest rate derivatives are instruments whose payoffs are dependent on the
level of interest rates. Such derivatives can be more difficult to value than
equity or exchange rate derivatives because

• the behaviour of an individual interest rate is more complicated than that
of a stock price,

• interest rates are used for discounting as well as for defining the payoff
from the derivative.

In this Section, we will consider several models which provide a description of
how short-term interest rate changes through time. The short rate rt is the rate
that applies to an infinitesimally short period of time at time t.

We will describe the short rate as an Itô process of the form

drt = α(rt) dt+ β(rt) dWt

where the drift and diffusion coefficients are independent of time. We will con-
sider three models

1. α(rt) = µrt, β(rt) = σrt (Rendleman and Bartter model),

2. α(rt) = a(b− rt), β(rt) = σ (Vasicek model),

3. α(rt) = a(b− rt), β(rt) = σ
√
rt (Cox, Ingersoll and Ross model).

5.4.1 Rendleman and Bartter Model

In the Rendleman and Bartter model, the short rate is governed by the S.D.E.

drt = µrt dt+ σrt dWt .

This means that rt follows a geometric Brownian motion and is the same type of
process that we assumed for stock price in Section 1. This assumption is a good
starting point; for example, the model ensures that interest rates are positive.
However, some key properties are also lacking, such as mean reversion.

Definition 5.3 (mean reversion)

When interest rates are high, the economy tends to slow down and there is a
low demand for funds from borrowers. As a result, rates go down. When rates
are low, there is a high demand from borrowers and rates tend to rise. This
is known as mean reversion. The effect is negative drift when rt is high and
positive drift when rt is low. Overall, interest rates appear to be pulled back to
some long-run average level over time.

Comment

The Rendleman and Bartter model does not incorporate mean reversion since
plainly,

E (rt) = r0 exp (µt) → ∞ as t → ∞
for µ positive. If µ is negative,

E (rt) = r0 exp (µt) → 0 as t → ∞.

Neither scenario is compatible with the definition of mean reversion.
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5.4.2 Vasicek Model

Here, the short rate is modelled by

drt = a(b− rt) dt+ σ dWt ,

where a, b and σ are positive real numbers. Note that the model incorporates
mean reversion and rt is pulled to a level b at rate a. The process is also known
as a Gaussian Ornstein-Uhlenbeck process.
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Figure 2: 2 simulated skeleton paths from the Vasicek model with b = 0.1,
σ = 0.02 and (a) a = 1, and (b) a = 0.1

To see that the Vasicek model is mean reverting, we apply Itô’s formula with
G(t, x) = xeat. We obtain

Gt = xaeat , Gx = eat , Gxx = 0 .

Hence,

Gt(t, rt) = arte
at , Gx(t, rt) = eat , Gxx(t, rt) = 0

Thus,

d
(
rte

at
)

=
(
arte

at + a(b− rt)e
at
)
dt+ σeatdWt

= abeatdt+ σeatdWt

⇒ rte
at − r0 =

∫ t

0

abeaτdτ + σ

∫ t

0

eaτdWτ

⇒ rte
at = r0 + [beaτ ]

t
0 + σ

∫ t

0

eaτdWτ

⇒ rt = r0e
−at + b(1− e−at) + σe−at

∫ t

0

eaτdWτ

To proceed, we need (the first part) of the following result for square-integrable
functions g(t).

Result 5.1

(i) E
(∫ t

0
g(τ)dWτ

)
= 0
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(ii) E

([∫ t

0
g(τ)dWτ

]2)
=
∫ t

0
g2(τ)dτ .

Note that part (ii) is known as the Itô isometry. Justification of this result is left
as an exercise. Combining the two results and noting that Itô integrals involve
combinations of normal random variables leads to part (iii) that

(iii) ∫ t

0

g(τ)dWτ ∼ N

(
0 ,

∫ t

0

g2(τ)dτ

)
.

Now, returning to the Vasicek model and using the fact that E
(∫ t

0
g(τ)dWτ

)
=

0, we have
E(rt) = r0e

−at + b(1− e−at)

which is just b in the limit as t → ∞. The Vasicek model is mean reverting.
As an interesting exercise, we may also find the variance of rt. We have

using (ii) of Result 5.1 that

V ar(rt) = σ2e−2at

∫ t

0

e2aτdτ

=
σ2

2a

(
1− e−2at

)
.

Part (iii) of Result 5.2 then gives

rt|r0 ∼ N

(
r0e

−at + b(1− e−at) ,
σ2

2a

(
1− e−2at

))
.

This distribution can be sampled recursively to give a skeleton path of the pro-
cess (that is, a realisation of the process at discrete times). Two such realisations
can be seen in Figure 2. The effect of mean reversion is apparent, as is the effect
of a, since the larger the value of a results in stronger reverting behaviour. It
should also be clear that the Vasicek model allows for negative interest rates,
which is an undesirable property.

5.4.3 Cox, Ingersoll and Ross Model

In the model proposed by Vasicek, the short term rate can become negative.
Whilst this is not considered impossible by some (in practical terms), others
consider it to be unsatisfactory. Cox, Ingersoll and Ross propose an alternative
model where rates are always nonnegative,

drt = a(b− rt) dt+ σ
√
rt dWt ,

where a, b and σ are positive real numbers. The process is mean reverting and
the standard deviation of the change in interest rate in a short time period is
proportional to

√
rt. Consequently, as short rate increases, so does the standard

deviation. Although the S.D.E. can be solved analytically, this task is beyond
the scope of the course. Therefore, skeleton paths were generated using the
Euler-Maruyama scheme and plotted in Figure 3. Finally, note that the process
is non-negative. To see this intuitively (rather than formally), note that the
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Figure 3: 2 simulated skeleton paths from the CIR model with b = 0.1, σ = 0.02
and (a) a = 1, and (b) a = 0.1

infinitesimal variance σ2rt tends to zero as the process approaches zero (from
above). We expect this to be the case for non-negative processes, otherwise
fluctuations around zero due to the non-negligible stochastic noise term near
zero will send the process negative.
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5.5 Stochastic Volatility Models (not examinable)

We have seen in Section 3 that it may be unreasonable to assume that the
volatility of a stock is constant over time. Here, we use the S.D.E. formalism
to construct a class of models whose volatility is also a stochastic process. Such
models are called stochastic volatility (S.V.) models. We will consider models
of the form

dSt = (µ− q)St dt+ St

√
Vt dW1,t

dVt = a(b− Vt) dt+ σ
√
Vt dW2,t

where St is an asset’s price, Vt is a volatility process, µ, q, a, b, σ are constants
and W1,t, W2,t are uncorrelated Brownian motions. Clearly, Vt is of C.I.R. type
and St (conditional on Vt) is of G.B.M. type. Note that we can write this model
in the form

dXt = α(Xt) dt+ β(Xt) dWt

by setting

Xt =

(
St

Vt

)
, α(Xt) =

(
(µ− q)St

a(b− Vt)

)
, β(Xt) =

(
St

√
Vt 0

0 σ
√
Vt

)
, dWt =

(
dW1,t

dW2,t

)
.

By adopting the notation of Section 5.3 for a partition of [0, T ], the Euler
approximation for this model is given by

Si = Si−1 + (µ− q)Si−1 ∆t+ Si−1

√
Vi−1 ∆W1,t

Vi = Vi−1 + a(b− Vi−1)∆t+ σ
√
Vi−1 ∆W2,t

for i = 1, . . . , n with ∆W1,t ∼ N(0,∆t) and ∆W2,t ∼ N(0,∆t) uncorrelated.
Since the volatility process is independent of the price process, we simulate a
skeleton path from the S.V. model with the following algorithm:

1. Initialise with S0, V0.

2. For i = 1, . . . , n, draw Vi ∼ N(Vi−1 + a(b− Vi−1)∆t , σ2Vi−1∆t).

3. For i = 1, . . . , n, draw Si ∼ N(Si−1 + (µ− q)Si−1 ∆t , S2
i−1Vi−1∆t).

Figure 4 shows a simulated skeleton path from the S.V. model. It is easy to see
the effect of the volatility realisation on the stock price realisation.

Naturally, the S.V. model can be used to price options. Since typically no
closed form pricing formulae exist when it is assumed that stock price follows
the S.V. model, the Monte Carlo methods of Section 3 must be used.

Example 5.4

Suppose that stock price follows a S.V. model with parameters q = 0.0, a = 0.2,
b = 0.1 and σ = 0.02. Suppose further that the initial price of stock is £40, the
risk free interest rate is r = 0.05, and we wish to find the fair price of the Asian
call option with strike price K = 50 and maturity T = 1 year.

We estimate the fair price via Monte Carlo by performing the following steps:

1. Simulate daily prices Sd
0 , S

d
1 , . . . , S

d
252 in the risk-neutral world. For the

S.V. model, this means setting µ = r.
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Figure 4: 1 simulated skeleton path from the S.V. model with µ = 0.1, q = 0.0,
a = 0.2, b = 0.1 and σ = 0.02. Plot (a) shows the St process and plot (b) shows
the Vt process.

2. Calculate the payoff at time T = 1:(
252∑
i=1

Sd
i

252
−K

)+

.

3. Repeat steps 1 and 2 to get N sample values of the payoff.

4. Calculate the mean of these sample payoffs to get an estimate of the
expected payoff.

5. Discount the expected payoff at the risk-free interest rate (r = 0.05 here)
to get an estimate of the value of the option.
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The following R function performs the algorithm:

sv=function(T=1,dt=1/252,s0=c(50,0.1),r=0.05,a=0.2,b=0.1,sigma=0.02,k=50,N=1000)

{

n=T/dt

sdt=sqrt(dt)

s=matrix(0,ncol=2,nrow=n+1)

payoff=vector("numeric",len=N)

for(j in 1:N)

{

s[1,]=s0

for(i in 2:(n+1))

{

s[i,2]=s[i-1,2]+a*(b-s[i-1,2])*dt+sigma*sqrt(s[i-1,2])*rnorm(1,0,sdt)

}

for(i in 2:(n+1))

{

s[i,1]=s[i-1,1]+r*s[i-1,1]*dt+sqrt(s[i-1,2])*s[i-1,1]*rnorm(1,0,sdt)

}

payoff[j]=max(mean(s[,1])-k,0)

}

exp(-r*T)*mean(payoff)

}

A single execution of this function gave an estimate of £3.80 for the fair price.

5.6 Stochastic Volatility Models with Jumps (not exam-
inable)

Whilst the stochastic volatility remedies the constant volatility assumption of
G.B.M., it does not allow for any discontinuities in the price process. Such
jumps can correspond to a crash in the market (e.g. Black Monday October
1987, 9/11 etc). We therefore extend the S.V. model of the previous Section to
incorporate jumps in both prices and volatilities. The discretised model is

Si = Si−1 + (µ− q)Si−1 ∆t+ Si−1

√
Vi−1 ∆W1,t + Zs

i Ji

Vi = Vi−1 + a(b− Vi−1)∆t+ σ
√
Vi−1 ∆W2,t + Zv

i Ji

defined for i = 1, . . . , n. Now Ji ∼ Bernouilli(∆t) represent the jump times and
Zs
i and Zv

i are the jump sizes. Typically Zv
i follows an Exponential distribution

and Zs
i follows a Normal distribution.

Consider the S&P500 index data of Section 3. The returns are plotted
overleaf as well as the estimated volatility process (using a Bayesian estimation
method beyond the scope of this course). Clearly, fitting the above model to
this dataset gives a jump in volatility on Black Monday.
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Figure 5: S&P500 index data (left) and filtered volatilities (right) — 2.5 and
97.5 percentiles (red lines) and 50 percentiles (black line).
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