
4 Pricing Exotic Options via Monte Carlo

The options considered up until now are termed vanilla options – they have
standard, well defined properties and their prices are regularly quoted by ex-
changes or brokers. Here, we will consider some nonstandard exotic options
whose prevalence has increased in recent years. In general, the payoff of these
options at maturity depends not only on the stock price at that time but also
on the path leading up to it. Consequently, explicit formulas (assuming a risk
neutral G.B.M.) for these options can be difficult to find. We will therefore show
how to use Monte Carlo simulation to compute their fair price. For simplicity
(and to allow convenient Monte Carlo simulation) we will only consider options
with fixed exercise times. The exotic options we will consider are:

• Power call options,

• Barrier options (calls and puts),

• Asian and lookback options (calls and puts).

4.1 Power Options

Recall that the standard European call option with strike price K has payoff at
maturity T given by

max(ST −K, 0) = (ST −K)+ .

That is, the payoff is a linear function of stock price at maturity. More general
call options exist, for example those with payoff given by

(Sγ
T −K)

+

are called power options and γ is called the power parameter (which in practice
is a number).

Definition 4.1

A power call option gives the holder the right (but not obligation) to buy 1
share of stock for K and then immediately sell for market value raised to the
power γ.

Pricing the power call option

It turns out that we can find an explicit formula for the risk-neutral G.B.M.
valuation (fair price) of such options. This will be useful for comparing against
estimation strategies later on.

Let Cγ(S0, T,K, σ2, r) denote the price of the European call option with
power γ. As usual, S0 is the initial stock price, T is the maturity, K is the
strike price, σ2 is the volatility (under the assumption of G.B.M.) and r is the
interest rate. Hence, C1(S0, T,K, σ2, r) = C(S0, T,K, σ2, r) denotes the Black-
Scholes price of the vanilla call option, that is, with power parameter 1. In
particular, note that the Black-Scholes price of one European call option is the
discounted expected payoff at maturity

C1(S0, T,K, σ2, r) = e−rTE
[
(ST −K)+

]
1



0 5 10 15

0
1

2
3

4
5

ST

g
S

T

Figure 1: Power call option payoff with K = 10 and γ = 2 (quadratic after√
10) and γ = 1 (linear after 10).

= e−rTE

[
(S0

ST

S0
−K)+

]
where ST /S0 ∼ LN([r − σ2/2]T, σ2T ) under the assumption of risk-neutral
G.B.M. We know that this expression can be evaluated to give the Black-Scholes
formula of Section 2.

Now, the fair price of the power call option is

Cγ(S0, T,K, σ2, r) = e−rTE
[
(Sγ

T −K)+
]

= e−rTE

[(
Sγ
0

Sγ
T

Sγ
0

−K

)+
]
.

Now, under the assumption that stock prices follow the risk neutral G.B.M. we
know that ST /S0 has a log-normal distribution as above. Note that

log

(
Sγ
T

Sγ
0

)
= γ log

(
ST

S0

)
∼ N(γ[r − σ2/2]T, γ2σ2T ).

We can force this distribution to have the same form as G.B.M. by defining new
parameters

σ2
γ = γ2σ2, rγ − σ2

γ/2 = γ(r − σ2/2).

Hence,

γ log

(
ST

S0

)
∼ N([rγ − σ2

γ/2]T, σ
2
γT )

⇒
Sγ
T

Sγ
0

∼ LN([rγ − σ2
γ/2]T, σ

2
γT ).
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Now, we have Cγ(S0, T,K, σ2, r) as

Cγ(S0, T,K, σ2, r) = e−rTE

[(
Sγ
0

Sγ
T

Sγ
0

−K

)+
]

= e−rT erγT e−rγTE

[(
Sγ
0

Sγ
T

Sγ
0

−K

)+
]

= e−rT erγTC1(S
γ
0 , T,K, σ2

γ , rγ)

where the last line follows by using the form of the Black-Scholes price (as a
discounted expected payoff with respect to a G.B.M., where in this case S0 is
replaced by Sγ

0 , r by rγ and σ by σγ). Hence we have found an explicit formula
for the fair price of a power call option with parameter γ. Let’s see how this
works with an example.

Example 4.1

Find the fair (risk-neutral) price of a power call option with maturity T = 2
years, strike price£3000, initial stock price S0 = £50 and payoff, max(S2

T−K, 0)
(a power parameter of 2). Suppose further that the risk-free interest rate is
r = 0.05 and stock price follows a geometric Brownian motion with volatility
parameter σ2 = 0.01.

Solution

The fair price of the option is

Cγ(S0, T,K, σ2, r) = e−rT erγTC1(S
γ
0 , T,K, σ2

γ , rγ)

where S0 = 50, T = 2, K = 3000, σ2 = 0.01, r = 0.05, γ = 2, S2
0 = 2500,

σ2
γ = γ2σ2 = 0.04 and

rγ − σ2
γ/2 = 0.09

⇒ rγ = 0.09 + 0.02 = 0.11 .

We compute C1(S
γ
0 , T,K, σ2

γ , rγ) using the Black-Scholes formula of Section 2,

C1(S
γ
0 , T,K, σ2

γ , rγ) = 2500Φ(ω)− 3000e−0.11×2Φ(ω − 0.2
√
2)

where

ω =
0.11× 2 + 0.22 × 2/2− log(3000/2500)

0.2
√
2

= 0.2746

and recall that log is base e. Hence we obtain C1(S
γ
0 , T,K, σ2

γ , rγ) = 324.59.
Therefore the fair price of the power call option is

Cγ(S0, T,K, σ2, r) = e(0.05+2×0.12/2)2 × 324.59

= 365.97.

We will revisit this example later on, when looking at Monte Carlo pricing.
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4.2 Barrier Options

Barrier options are options whose payoff depends on whether the asset’s price
reaches a certain level before maturity. To define a European barrier call option
with strike price K and maturity T , we specify a barrier ν – depending on the
type of barrier option, the option either comes alive or is killed when the barrier
is breached.

Definition 4.2

There are several types of barrier option:

• A down-and-in barrier option gives the holder the right to exercise the
option at time T provided that the stock price goes below ν at some time
before T i.e. the option becomes alive only if the security’s price goes
below ν before T .

• A down-and-out barrier option is killed if the security’s price goes below ν
before T . Note that in both the down-and out and down-and-in options,
ν is a value less than the initial stock price S0.

• An up-and-in barrier option becomes alive only if the security’s price goes
above ν before T .

• An up-and-out barrier option is killed if the security’s price goes above ν
before T . Note that in both the up-and out and up-and-in options, ν is a
value greater than the initial stock price S0.

Illustration

Figure 2 shows an example of an up-and-out barrier call that either expires
worthless (barrier breached) or not (barrier not breached and above strike at
maturity).

Figure 2: Up-and-out barrier call option. Two stock price path scenarios.
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Comments

• Provided the option remains alive, the payoff at time T (for the European
call) is max(ST −K, 0). If the option is killed at any time, the payoff is 0.

• The same definitions exist for the European barrier put, the only difference
being that if the option remains alive, the payoff at maturity is max(K −
ST , 0).

• If you own both a down-and-out and a down-and-in call option both the
same strike price K and maturity T then this is equivalent to owning one
vanilla call option (with parameters K and T ). This is true since only one
option can be in play at any time t (the down-and-in option if the barrier
is breached and the down-and-out otherwise). Consequently, if we denote
by Cdi and Cdo the respective risk neutral present values of owning the
down-and-in and down-and-out call options, then

Cdi + Cdo = C

where C is the Black-Scholes valuation of the vanilla European call option
given in Section 2. A similar argument follows for the up-and-in and
up-and-out options.

• We typically observe stock price on a daily basis. Therefore, let

Sd
i = Si/252

denote the price on day i at some arbitrary time. Hence, the down-and-in
barrier call option has payoff{

(ST −K)+ if Sd
i ≤ ν for some i = 1, . . . , 252T

0 if Sd
i > ν for all i = 1, . . . , 252T

Similarly, the down-and-out call option has payoff{
0 if Sd

i ≤ ν for some i = 1, . . . , 252T
(ST −K)+ if Sd

i > ν for all i = 1, . . . , 252T

4.3 Asian and Lookback Options

Asian options are options whose payoff depends on the average price of the asset
during at least some part of the asset’s lifetime. These averages are usually in
terms of the daily closing prices and we therefore let

Sd
i = Si/252

denote the price on day i as before. The most common Asian-type call option
with strike price K and maturity T (in years) has the following definition.

Definition 4.3

The holder of the Asian call option has the right (but not obligation) to buy 1
share for K and sell for the average price realised over (0, T ].
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Hence, assuming daily prices, the payoff is(
252T∑
i=1

Sd
i

252T
−K

)+

.

A common Asian put option with strike price K and maturity T has payoff(
K −

252T∑
i=1

Sd
i

252T

)+

.

Definition 4.4

The holder of the lookback call option has the right (but not obligation) to buy
1 share for

K = min
i=1,...,252T

Sd
i

at time T .
Hence, the lookback call option with maturity T has strike price given by

the minimum end-of-day price up to the maturity time. The payoff at time T is

ST − min
i=1,...,252T

Sd
i .

The lookback put has strike price given by the maximum end-of-day price up to
the maturity time. Hence, the payoff is

max
i=1,...,252T

Sd
i − ST .

Note that because the payoffs of both the lookback and Asian type options
depend on the price path followed, there are no known exact formulas for the
risk-neutral valuations of these options. However, approximate valuations are
possible by using Monte Carlo simulation methods.

4.4 Monte Carlo Integration

Suppose we have a random variable X with p.d.f. fX(x) and our goal is to
estimate

θ = E(X) =

∫
X

xfX(x) dx .

If we can generate values of X1, . . . , XN from fX(·) then an unbiased estimator
of the theoretical mean θ = E(X) is given by the sample mean

X̄ =
1

N

N∑
i=1

Xi .

Plainly,

E(X̄) =
1

N

N∑
i=1

E(Xi) = θ .
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Now suppose that Var(X) = v2 then

Var(X̄) =
1

N2

N∑
i=1

Var(Xi) = v2/N .

Hence we have shown that X̄ is both unbiased and consistent. Of course this
argument can be generalised. Suppose our goal is to evaluate E(g(X)) for some
function g(·). By definition,

E(g(X)) =

∫
X

g(x)fX(x) dx .

However, if we cannot perform the integration, how can we proceed? Again, if
we can generate values of X1, . . . , XN , then an unbiased estimator of E(g(X))
is given by

1

N

N∑
i=1

g(Xi)

and this estimator has variance proportional to 1/N . Therefore, better estimates
(in the sense of a small variance) are obtained for large N . This approach is
known as Monte Carlo simulation and can be applied to the pricing problem as
follows.

4.5 Pricing via Simulation

Suppose we are interested in finding the fair (risk-neutral) price of an option with
payoff g(·) at maturity T (in years) depending on daily stock price Sd

1 , . . . , S
d
252T .

If the risk free interest rate is r, then this price is given by the discounted
expected payoff at maturity. This is exactly the problem described above, in
the sense that the expectation involves integration, and so we can apply Monte
carlo simulation. Algorithmically, we perform the following

1. Simulate a random path Sd
0 , S

d
1 , . . . , S

d
252T in the risk-neutral world.

2. Calculate the payoff g(·) from the option at time T .

3. Repeat steps 1 and 2 to get say N sample values of the payoff.

4. Calculate the mean of these sample payoffs to get an estimate of the
expected payoff.

5. Discount the expected payoff at the risk-free interest rate to get an esti-
mate of the value of the option.

If we assume that stock prices follow a risk-neutral G.B.M. then we have
already seen how to simulate this process in Section 2.

Example 4.1 revisited

Find the fair (risk-neutral) price of a power call option with maturity T = 2
years, strike price£3000, initial stock price S0 = £50 and payoff, max(S2

T−K, 0)
(a power parameter of 2). Suppose further that the risk-free interest rate is
r = 0.05 and stock price follows a geometric Brownian motion with volatility
parameter σ2 = 0.01. Compare the analytic fair price to estimates obtained via
Monte Carlo.
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Solution

Recall that the exact fair price is 365.97. We can also estimate the fair price
of the option via Monte Carlo. A key step is the simulation of the stock price
process. Recall from Section 2.3.1 that for an equally spaced partition of [0, T ]
with time step ∆t

Sti = Sti−1
exp

{
(r − σ2/2)∆t+ σ(Wti −Wti−1

)
}

where Wti −Wti−1
∼ N(0,∆t). To simulate on a daily basis, we set ∆t = 1/252

and, starting with Sd
0 as a known value, simulate Sd

1 , . . . S
d
252T via the recursion

Sd
i = Sd

i−1 exp

{
(r − σ2/2)

1

252
+ σ(W d

i −W d
i−1)

}
, i = 1, 2, . . . , 252T

where 252T is the maturity time in days. We then calculate a sample value of
the expected payoff at time T , via

X1 = max
(
(Sd

252T )
2 − 3000, 0

)
.

We repeat these steps a further N−1 times to give N sample payoffs X1, . . . , XN .
We take the average and discount at the risk free interest rate to give an estimate
of the fair price of the power option as

e−rT 1

N

N∑
i=1

Xi .

The following R function takes as arguments S0, K, T , γ, σ, r and N , and
returns the Monte Carlo estimate of the fair price of the power option.

monte1=function (T=2, s0=50, r =0.05 , s i g =0.1 ,k=3000 ,N=1000)
{
n=T∗252
s=vector ( ”numeric ” , l en=n+1)
payo f f=vector ( ”numeric ” , l en=N)
for ( j in 1 :N){
s [1 ]= s0
for ( i in 2 : ( n+1))
{
s [ i ]= s [ i −1]∗exp(rnorm ( 1 , ( r−0.5∗ s i g∗ s i g )/252 , s i g/sqrt ( 2 52 ) ) )

}
payo f f [ j ]=max( ( s [ n+1])ˆ(2)−k , 0 )

}
exp(−r∗T)∗mean( payo f f )

}

monte1 ( )

A single execution of this function (with N = 10000) gave an estimate of 372.10
which is in reasonable agreement with the actual price of 365.97. Note that the
payoff is not dependent on the whole path, only the price of the stock at maturity.
Since we know the distribution of ST (log-normal), it is far more efficient to
simulate N values of ST and then set

Xi = max
(
(ST )

2 − 3000, 0
)
i = 1, . . . , N
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before taking the discounted average as an estimate of the fair price. The required
R function is

monte1=function (T=2, s0=50, r =0.05 , s i g =0.1 ,k=3000 ,N=1000)
{
payo f f=vector ( ”numeric ” , l en=N)
for ( j in 1 :N)
{
s=s0∗exp(rnorm ( 1 , ( r−0.5∗ s i g∗ s i g )∗T, s i g∗sqrt (T) ) )
payo f f [ j ]=max( s ˆ(2)−k , 0 )

}
exp(−r∗T)∗mean( payo f f )

}

monte1 ( )

Finally, note that every time we execute the function, we get a different
estimate, since we’re generating a realisation of the estimator, which is a random
variable.

Example 4.2

Suppose that stock prices follow a G.B.M. with volatility parameter σ2 = 0.01,
the initial stock price is £50, the risk free interest rate is r = 0.05. Describe a
detailed Monte Carlo algorithm to find the risk-neutral (fair) price of a down-
and-in barrier call option with strike price K = £51, maturity T = 1 year and
barrier ν = 49.

Solution

Let us assume that the stock price is observed daily. The fair price of the option
is the discounted expected payoff at time T given by

e−rTE
(
I(Sd

252 −K)+
)

where I is an indicator function defined by

I =

{
1 if Sd

i ≤ ν for some i = 1, . . . , 252
0 if Sd

i > ν for all i = 1, . . . , 252

That is, the option becomes alive (and remains alive) if the end-of-day stock
price falls below ν at any time before maturity. We estimate the fair price Cdi

of the option by implementing the following sequence of steps:

1. Simulate a random path Sd
0 , S

d
1 , . . . , S

d
252T in the risk-neutral world, via

the recursion

Sd
i = Sd

i−1 exp

{
(r − σ2/2)

1

252
+ σ(W d

i −W d
i−1)

}
, i = 1, 2, . . . , 252

where W d
i −W d

i−1 ∼ N(0, 1/252).

2. Calculate a sample payoff at time T with

X1 = I ×max(0, Sd
252 − 51).
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3. Repeat steps 1 and 2 to get say N sample values of the payoff,

X1, X2, . . . , XN

4. Calculate the mean of these sample payoffs to get an estimate of the ex-
pected payoff.

5. Discount the expected payoff at the risk-free interest rate to get an estimate
of the value of the option, that is, calculate

e−rT X̄.

In practice, this is achieved in R with (for example) the following function.

monte2=function (T=1, s0=50, r =0.05 , s i g =0.1 ,k=51,nu=49,N=1000)
{
n=T∗252
s=vector ( ”numeric ” , l en=n+1)
payo f f=vector ( ”numeric ” , l en=N)
for ( j in 1 :N){
s [1 ]= s0
I=0
for ( i in 2 : ( n+1))
{
s [ i ]= s [ i −1]∗exp(rnorm ( 1 , ( r−0.5∗ s i g∗ s i g )/252 , s i g/sqrt ( 2 52 ) ) )
i f ( s [ i ]<nu)
{
I=1

}
}

payo f f [ j ]=max( I∗ ( s [ n+1]−k ) , 0 )
}
exp(−r∗T)∗mean( payo f f )

}

monte2 ( )

A single call of this function with N = 10000 gave an estimate of Cdi as 1.24.
We can use this value to estimate the fair price Cdo of the down-and-out barrier
call option (with the same parameters) by using the relation in the comments
on page 54. We calculate the fair price of the vanilla call option (with the same
parameters) via the Black-Scholes formula. Performing the desired calculation
gives C = 2.80. Hence an estimate of Cdo is 1.56.

Comments

• Note that between any two time instants ti and ti+1 at which we ob-
serve the stock, St could fall below ν but then increase sufficiently to
become greater than ν before ti+1. This breaking of the barrier would
go undetected as we only have the sample path at discrete time intervals.
However, provided we use a sufficiently fine discretisation, the probability
of this occurring is very small. Hence, the error introduced from discrete
sampling of the path is small.
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4.6 Variance Reduction Techniques

Consider the task of choosing the number of simulated payoffs, N , in the Monte-
Carlo estimate of the fair price of a particular option with payoff function g(·).
Denote the fair price by ϕ and its Monte Carlo estimator by ϕ̂. Hence,

ϕ = e−rTE {g(·)}

and the Monte Carlo estimator is

ϕ̂ =
e−rT

N

N∑
i=1

Xi

where Xi denotes a sample payoff and the collection of Xi are iid. Note that
E(ϕ̂) = ϕ and let Var(e−rTXi) = v2 so that Var(ϕ̂) = v2/N .

For large N , the central limit theorem applies and

ϕ̂ ∼ N(ϕ , v2/N) approximately.

Hence, a 95% confidence interval is given by

ϕ̂− 1.96
v√
N

< ϕ < ϕ̂+ 1.96
v√
N

Hence our uncertainty about the value of the fair price is inversely proportional
to

√
N . Therefore, to double the accuracy of a simulation, we must quadruple

N ; to increase the accuracy by 10, the number of trials must be increased by a
factor of 100.

To estimate the fair price by Monte-Carlo, we therefore typically need a
very large value of N to ensure reasonable accuracy. This can be very costly in
terms of computation time. We therefore examine a very simple technique that
reduces the variance of the estimator for given N .

4.6.1 Using Antithetic Variables

Recall that a realisation of the daily stock price process can be generated via
the recursion

Sd
i = Sd

i−1 exp

{
(r − σ2/2)

252
+ σ(W d

i −W d
i−1)

}
i = 1, . . . , 252T

where W d
i − W d

i−1 ∼ N(0, 1/252). It will be helpful for us to re-write this
equivalently as

Sd
i = Sd

i−1 exp{Yi} where Yi ∼ N

(
(r − σ2/2)

252
,
σ2

252

)
.

Hence, in step 1 of the Monte Carlo algorithm we generate Y1, . . . , Y252T and
use these values to compute Sd

1 , . . . , S
d
252T . In step 2, we calculate a realisation

of the payoff X1 = g(Sd
1 , . . . , S

d
252T ).

The anithetic technique re-uses / recycles the Yi in a clever way to calculate a
second stock price realisation, and in turn, a second payoff X2 that is negatively
correlated with X1. To this end, the anithetic technique sets

Y ∗
i =

2(r − σ2/2)

252
− Yi for i = 1, . . . , 252T
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and uses the Y ∗
i to generate a new realisation of the price process, Sd∗

1 , . . . , Sd∗
252T ,

before finally computing X2 = g(Sd∗
1 , . . . , Sd∗

252T ). The process then repeats to
calculate pairs of negatively correlated payoffs X3 and X4, etc.

Is this a valid Monte Carlo strategy? Yes. Note that the Y ∗
i have the same

distribution as the Yi but are negatively correlated with the Yi. To see this,
note that Y ∗

i is just a linear transformation of Yi and

E(Y ∗
i ) =

2(r − σ2/2)

252
− E(Yi) = E(Yi),

Var(Y ∗
i ) = (−1)2Var(Yi) = Var(Yi).

Finally,

Cov(Y ∗
i , Yi) = Cov

(
2(r − σ2/2)

252
− Yi, Yi

)
= −Var(Yi)

< 0.

This negative covariance induces a negative covariance between X1 and X2, X3

and X4 etc. Consequently, for the antithetic scheme,

Var(X̄) =
1

N2

N∑
i=1

Var(Xi) +
2

N2

∑
i<j

Cov(Xi, Xj)

and we note that the first term is the variance of the estimator used in the stan-
dard Monte Carlo scheme and the second term is negative. Hence, comapared
to the standard scheme, the antithetic scheme gives an estimator with a smaller
variance.
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