
3 Estimating Volatility

In order to apply the Black-Scholes pricing formula, we need five parameters –
initial stock price S0, volatility of the stock σ2, riskless interest rate r, maturity
of the option T and strike price K. Note that four of the five parameters are
known and the value of σ2 needs to be estimated. One possibility is to use
historic data. In this Section we will detail how to estimate σ2 using daily
closing prices and also opening and closing prices. We will also consider implied
volatility.

3.1 Using Closing Data

Suppose that Y1, . . . , Yn are independent random variables having a common
probability distribution with mean µ0 and variance σ2

0 . For unknown µ0, the
usual estimator of σ2

0 is the sample variance,

σ̂2
0 =

∑n
i=1(Yi − Ȳ )2

n− 1
=

∑n
i=1 Y

2
i − nȲ 2

n− 1
.

Note that the estimator is a random variable (and the capitalisation of the Yi

reflects this). Recall that the above is an unbiased estimator of σ2
0 since

E(σ̂2
0) = σ2

0 .

Furthermore, if the Yi are Normally distributed, it can be shown that

V ar(σ̂2
0) =

2σ4
0

n− 1
.

In this case, σ̂2
0 is a consistent estimator of σ2

0 . Recall that for consistency, we
need asymptotic unbiasedness and the variance of the estimator to tend to zero
as the sample size increases.

Proof of unbiasedness

We can show that E(σ̂2
0) = σ2

0 as follows. We have that

E(σ̂2
0) =

1

n− 1

(
n∑

i=1

E(Y 2
i )− nE(Ȳ 2)

)
.

Now,
V ar(Yi) = σ2

0 = E(Y 2
i )− [E(Yi)]

2.

Hence, using E(Yi) = µ0 and re-arranging the above gives

E(Y 2
i ) = σ2

0 + µ2
0.

In a very similar manner, we obtain

E(Ȳ 2) =
σ2
0

n
+ µ2

0.

Finally,

E(σ̂2
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=
1

n− 1
(n− 1)× σ2

0

= σ2
0

as required.

Application to p.a. volatility estimation

We apply this procedure to estimate the volatility of a stock price as follows.
Suppose the closing price of a stock is observed at fixed intervals of time (e.g.
every day) and is assumed to follow a G.B.M. with volatility σ2 (per annum).
Define:

• n+ 1: Number of observations

• Ci: Closing price at the end of interval i (i = 0, . . . , n)

• ∆t: Length of time interval in years

and let

Yi = log

(
Ci

Ci−1

)
.

Now, under the assumption of G.B.M. Yi follows a Normal distribution with
variance σ2∆t. In this context, the sample variance would give an unbiased
estimator of σ2∆t. Therefore we construct the estimator of σ2 as

σ̂2 =
1

∆t

∑n
i=1(Yi − Ȳ )2

n− 1
=

1

∆t

∑n
i=1 Y

2
i − nȲ 2

n− 1
.

Comments

• Choosing a value n is not as straightforward as would appear. Naturally,
more data will lead to more accuracy. However, it may not be reasonable
to assume that the volatility of a particular stock is the same now as, say
ten years ago. We will come back to this point later on.

• The procedure is typically used with daily data. An important point
is whether volatility should be measured per calendar year or trading
year. Evidence suggests that volatility is largely caused by trading itself
and therefore σ2 is typically measured per trading year. Since there are
(approximately) 252 trading days in a year (so that 1 day = 1/252 years),
the estimator of σ2 based on n+ 1 days of data is

σ̂2 = 252

∑n
i=1(Yi − Ȳ )2

n− 1
= 252

∑n
i=1 Y

2
i − nȲ 2

n− 1
.

Example 3.1

Consider the following closing day Gas prices (in dollars) observed on 21 consec-
utive days. Assuming that Gas price follows a G.B.M., we estimate the volatility
σ2 (per annum) by computing

20∑
i=1

y2i =

20∑
i=1

[
log

(
Ci

Ci−1

)]2
= 0.00615
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Day (i) Closing Price (Ci) Day (i) Closing Price (Ci)
0 52.75 11 59.48
1 53.43 12 58.12
2 54.51 13 57.40
3 53.77 14 56.38
4 53.90 15 57.60
5 53.66 16 57.25
6 54.54 17 57.44
7 54.92 18 56.07
8 55.00 19 56.21
9 56.88 20 57.76
10 57.80

Table 1: Commodity Prices (dollars)

and

ȳ =
1

20

20∑
i=1

log

(
Ci

Ci−1

)
= 0.00454 .

Hence we obtain the estimate

σ̂2 = 252
0.00615− 20× 0.004542

19
= 0.0761 .

Test Yourself Test yourself:
https://numbas.mathcentre.ac.uk/question/145109/estimating-volatility/

embed/?token=2ed44708-888f-465d-b7c5-8a68dac67b27

Example 3.2

Here, we will consider daily closing values of the Standard and Poors 500
(S&P500) index from January 03, 2012 until October 25, 2022. The data set
can be downloaded from the course page (click Download SandP500.RData and
double click the file once it’s downloaded) or can be read directly from the
URL using the first line of the code below. The data will then be loaded into
R (RStudio) where a new vector called ‘sp’ will be loaded into the R environ-
ment. The following commands can be used to plot:

load(url("https://www.mas.ncl.ac.uk/~nak102/teaching/mas3904/SandP500.RData"))

plot(ts(sp,start=2012,deltat=1/252),xlab="Time (years)",ylab="Price (dollars)")

We can plot the daily returns, log(Ci/Ci−1) with

len = length(sp)

ret = log(sp[2:len]/sp[1:(len-1)])

plot(ts(ret,start=2012,deltat=1/252),xlab="Time (years)",ylab="Returns")

Figure 1 shows daily closing prices and returns. Assuming that the S&P500
index data follows a G.B.M. we can estimate the volatility per annum, using
the full set of observations, with the command,
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Figure 1: Daily closing prices and returns of the S&P500 index

var(ret)*252

which yields σ̂2 = 0.0294. Note that in computing this estimate we have as-
sumed that the volatility is constant over the period January 03, 2012 – October
25, 2022. Figure 2 shows estimates of square root annual volatility, σ, obtained
by taking the S&P500 data for each year in turn, and applying the formula (and
square-rooting). On inspection of this plot, it appears that our assumption of
a constant volatility over the entire period may be an unreasonable one.

3.2 Using Opening and Closing Data (not examinable)

Let Ci denote the (closing) price of a particular stock at the end of trading day i.
Assuming that stock price follows a geometric Brownian motion, log(Ci/Ci−1)
follows a Normal distribution with variance σ2/252. Now let Oi denote the
opening price at the start of trading day i and write

log

(
Ci

Ci−1

)
= log

(
Ci

Oi

Oi

Ci−1

)
= log

(
Ci

Oi

)
+ log

(
Oi

Ci−1

)
.

Now, assuming that the ratio price change during a trading day is independent of
the change that happened when the market was closed (i.e. Ci/Oi and Oi/Ci−1

are independent) it follows that

Var (log(Ci/Ci−1)) = Var (log(Ci/Oi)) + Var (log(Oi/Ci−1))

= Var (C∗
i −O∗

i ) + Var
(
O∗

i − C∗
i−1

)
where C∗

i = log(Ci) and O∗
i = log(Oi). If we observe closing prices on days

0, 1 . . . , n and opening prices on days 1, 2, . . . n and assume that C∗
i − O∗

i and
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Figure 2: Estimated square root volatility against year, using the S&P500 data.

O∗
i − C∗

i−1 both have a mean of approximately 0, then we may estimate σ2 by

σ̂2 = 252

∑n
i=1

[
(C∗

i −O∗
i )

2 + (O∗
i − C∗

i−1)
2
]

n− 1
. (1)

Example 3.3

Consider the following opening and closing day prices (in dollars) of the S&P500
observed on 11 consecutive days.

Day (i) Open (Oi) Close (Ci)
0 241.13
1 241.24 242.49
2 242.71 245.73
3 245.73 248.13
4 248.18 244.35
5 244.12 241.99
6 241.13 244.06
7 244.56 250.84
8 250.67 252.04
9 252.12 254.70
10 254.70 251.79

Table 2: S&P500 opening and closing prices (dollars)

We estimate the per annum volatility σ2 by computing

n+ 1 = 11, n = 10,

5



so that
10∑
i=1

(log(Ci)− log(Oi))
2 =

10∑
i=1

(C∗
i −O∗

i )
2 = 0.00165

and
10∑
i=1

(log(Oi)− log(Ci−1))
2 =

10∑
i=1

(O∗
i − C∗

i−1)
2 = 1.94× 10−5

Hence our estimate is

σ̂2 =
252

9

10∑
i=1

[
(C∗

i −O∗
i )

2 + (O∗
i − C∗

i−1)
2
]
= 0.047
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3.3 Implied Volatility

We have seen how to estimate σ from historic data. In practice, traders usually
work with implied volatilities. These are the volatilities implied by option prices
observed in the market.

Definition 3.1

The implied volatility of an option is the value of the volatility (of the underlying
stock process) which when input into an option pricing model gives a value equal
to the current/quoted price of the option.

Example 3.4

Suppose that stock prices follow a risk neutral G.B.M. (with parameters r and
σ2). Now suppose that the fair price of one ECO is 1.875 when S0 = 21,
K = 20, r = 0.1 and T = 0.25. The implied volatility is the value of σ that,
when substituted into the Black-Scholes formula gives C0 = 1.875.

Unfortunately, it is not possible to analytically express σ as a function of
S0,K, r, T using the Black-Scholes formula. An iterative search procedure can
be used instead. For example, start with a value σ = 0.2 and calculate a value
for C0. The following R function should be useful:

bs=function ( s0=21,K=20, r =0.1 ,T=0.25 , s i g )
{
omega=(r∗T+s i g∗ s i g∗T/2−log (K/s0 ) )/ ( s i g∗sqrt (T) )
#Return BS pr i c e
s0∗pnorm( omega ,0 ,1)−K∗exp(−r∗T)∗pnorm( omega−s i g∗sqrt (T) )

}
bs ( s i g =0.3)

Then, bs(sig=0.2) gives C0 = 1.76, which is too low. Since the fair price
is increasing in σ (proof of which is beyond the scope of the course), we could
try σ = 0.3. We perform the following in R:

bs(sig=0.3)

[1] 2.101014

> bs(sig=0.25)

[1] 1.926831

> bs(sig=0.21)

[1] 1.795785

> bs(sig=0.22)

[1] 1.827633

> bs(sig=0.23)

[1] 1.860137

> bs(sig=0.235)

[1] 1.876611

> bs(sig=0.234)

[1] 1.873305

which suggests an implied volatility of 0.234-0.235. More powerful iterative
search procedures, such as the Newton-Raphson method could be used.
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