
2 Continuous time models

Any variable whose value changes over time in an uncertain way is said to
follow a stochastic process. Such processes can be classified as discrete time or
continuous time. Stochastic processes can also be classified as having continuous
state space or discrete state space. In this part of the course, we aim to model
the dynamics of the price of a stock via a continuous state space, continuous time
stochastic process. Naturally, stock prices take discrete values (e.g. multiples
of a penny), nevertheless, the continuous state, continuous time interpretation
can be extremely useful and many important results (such as the Black-Scholes
pricing formula) can be derived from this setting.

We begin by reviewing Brownian motion and geometric Brownian motion
before considering some further topics.

2.1 Brownian motion

Definition 2.1 (stochastic process)

A stochastic process is a collection of random quantities {Xt, t ∈ T} with state
space S and index set T . We will consider only continuous state space, contin-
uous time processes, that is with S ⊆ R and T ⊆ R+.

The first such process we will consider as a model for stock price is Brownian
Motion. This long-studied process was first observed by botanist Robert Brown
in 1827 (hence the name). It was proposed as a model for asset price movements
in 1900 by Louis Bachelier whilst governing laws were stated by Albert Einstein.
Norbert Wiener proved many results including non-differentiability of sample
paths. Consequently, a 1-d Brownian motion is often referred to as a Wiener
process.

Definition 2.2 (standard Brownian motion)

Formally, {Wt, t ≥ 0} is a standard Brownian motion (B.M.) if Wt depends
continuously on t, Wt ∈ (−∞,∞) and the following 3 assumptions hold

(1) W0 = 0 with probability 1 ,
(2) The increment Wt2 −Wt1 is independent of the increment Wt1 −Wt0

for all times t2 > t1 > t0 ≥ 0
(3) For all times 0 ≤ t1 < t2 < ∞ , Wt2 −Wt1 ∼ N(0, t2 − t1) .

Important properties

• The process is Markov : {Wt} has the property that future states are
independent of the past states given the present state.

• Note that using Definition 2.2(1) and 2.2(3) givesWt−W0 = Wt ∼ N(0, t).
Since we have usedW0 = 0, we may prefer to write (Wt|W0 = 0) ∼ N(0, t).

• For times s < t define the transition density of the process by p(wt |Ws =
ws). Now note that

Wt = Wt −Ws +Ws .
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From Definition 2.2(3), Wt − Ws ∼ N(0, t − s) and so conditioning on
Ws = ws gives

(Wt|Ws = ws) ∼ N(ws, t− s) (1)

and hence the transition density is

f(wt |Ws = ws) =
1√

2π(t− s)
exp

{
− (wt − ws)

2

2(t− s)

}
, −∞ < wt < ∞.

This is leads us to think about the process as a continuous time random
walk – given a value ws of the process at time s, the distribution of the
process at a future time t is ws plus some zero mean Gaussian noise.

• Standard Brownian motion can be generalised by scaling by a constant
and shifting by a linear function of time. A generalised Brownian motion
with drift a and diffusion coefficient b2 is defined as

Xt = x0 + at + bWt a ∈ R, b2 ∈ R+

For times s < t we have that

Xt = Xt −Xs +Xs

= x0 + at + bWt − x0 − as − bWs +Xs

= Xs + a(t− s) + b(Wt −Ws) .

Hence
(Xt|Xs = xs) ∼ N

(
xs + a(t− s) , b2(t− s)

)
. (2)

Note that a = 0 and b = 1 returns the standard Brownian motion process.

Example 2.1

Suppose the cash position of a company (measured in thousands of pounds)
follows a generalised B.M. with drift a = 20 per year and variance 900 per year
(i.e. diffusion coefficient b2 = 900). Initially the cash position is 50. Write down
the distribution of the cash position after 6 months, 1 year, 10 years.

Solution

Denote the cash position at time t by Xt. Let x0 = 50. Using equation (2),
after 6 months (=0.5 years)

(X0.5|X0 = 50) ∼ N (50 + 20× 0.5 , 900× 0.5)

= N(60 , 450)

Similarly,

(X1|X0 = 50) ∼ N(70 , 900)

(X10|X0 = 50) ∼ N(250 , 9000)

Note that 1. cash position can become negative (we interpret this as the situation
where the company is borrowing funds) and 2. our uncertainty increases as the
square root of how far ahead we are looking. Test Yourself Test yourself:

https://numbas.mathcentre.ac.uk/question/145105/generalised-brownian-motion/

embed/?token=9d497eb0-5666-4ac4-a4a2-6bed17d14f95
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Example 2.2

For times r < s < t < u show that

E [(Wt −Wr)(Wu −Ws)] = t− s .

Solution

As it stands, the increments are not independent so we cannot simply take the
expectation of each term in the product. (To see this, consider the intervals (r, t)
and (s, u) which overlap.) So, we re-write the expression in such a way as to
give a sum of products of independent terms. By adding and subtracting Ws and
Wt we have

E [{(Wt −Ws) + (Ws −Wr)} × {(Wu −Wt) + (Wt −Ws)}] .

Now, multiplying out gives

E
[
(Wt −Ws)

2 + (Wt −Ws)(Wu −Wt) + (Ws −Wr)(Wu −Wt) + (Ws −Wr)(Wt −Ws)
]
.

The last three terms in the sum involve pairs of independent increments. Hence,
upon taking the expectation inside the brackets we see that all terms are zero
except

E
[
(Wt −Ws)

2
]
= Var(Wt −Ws) = (t− s)

since E(Wt −Ws) = 0 from Definition 2.2(3).

2.1.1 Simulating/visualising Brownian motion

The expected length of the path followed by Wt in any time interval is infinite.
Consequently, simulation of a full realisation of Wt on say [0, T ] is impossible. It
is possible however to construct a skeleton of a sample path of Wt by discretising
time and then simulating Wt at each time point using equation(2).

Split [0, T ] into n + 1 equidistant points 0 = t0 < t1 < . . . tn = T . Let
ti+1 − ti = ∆t = T/n. Consider a generalised B.M. Xt with drift a, diffusion
b2 and X0 = x0. The distribution of Xt1 conditional on X0 = x0 is Normal
with mean x0 + a∆t and variance b2∆t. We simulate from this distribution to
obtain a realisation of Xt1 , namely xt1 . Now simulate Xt2 |Xt1 = xt1 ∼ N(xt1 +
a∆t, b2∆t). In general, at time ti, simulate Xti |Xti−1 = xti−1 ∼ N(xti−1 +
a∆t, b2∆t).

Algorithmically:-

1. Initialise X0 = x0. Put i := 1

2. Simulate Xti |Xti−1 = xti−1 ∼ N(xti−1 + a∆t, b2∆t)

3. If ti = T , stop otherwise put i := i+ 1 and go to step 2.

The following R function takes as arguments T , ∆t, x0, a and b, and returns a
skeleton path of a generalised B.M.

genbm=function (T=20,dt=0.01 , x0=0,a=0,b=1)
{
n=T/dt
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simvec=vector ( ”numeric ” , l en=n+1)
simvec [1 ]= x0
for ( i in 2 : ( n+1))
{

simvec [ i ]=rnorm(1 , simvec [ i −1]+a∗dt , b∗sqrt (dt ) )
}

simvec
}
#Run the func t i on wi th
genbm( )

Plot the path with

plot(ts(genbm(),start=0,deltat=0.01))

Figure 1 shows a single simulated realisation of a standard B.M. viewed
at decreasing sampling intervals. Note that as ∆t → 0, the true process is
obtained. Figure 2 shows 4 simulated realisations with varying drift a and
diffusion b2. Clearly, increasing a shifts the trajectory up (proportional to time)
and increasing b causes the trajectory to vary more about its mean.
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Figure 1: 1 simulated realisation of a standard B.M. with sampling frequency
(a) ∆t = 1, (b) ∆t = 0.5, (c) ∆t = 0.1 and (d) ∆t = 0.01.

2.2 Lognormal distribution

In order to formulate a more realistic model of stock price we will first review
the Lognormal distribution. Note that in this course, log = loge = ln.
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Figure 2: 4 simulated realisations of a generalised B.M. with (a) a = 0.1, b = 1
(b) a = −0.1, b = 1 (c) a = 0, b = 0.1 and (d) a = 0, b = 2.

Let Y be a Lognormal random variable with parameters m and v2. Then,
we write Y ∼ LN(m, v2) with pdf

fY (y) =
1

y
√
2πv2

exp

{
− (log(y)−m)2

2v2

}
y > 0 .

The expectation of Y is

E(Y ) = em+ 1
2 v

2

(3)

and the variance of Y is

Var(Y ) = e2m+v2
(
ev

2

− 1
)
. (4)

Note that if Y ∼ LN(m, v2), then log(Y ) ∼ N(m, v2). Or, equivalently, if
X ∼ N(m, v2), then Y = exp(X) ∼ LN(m, v2). We can therefore obtain (3)
and (4) by considering the moment generating function (mgf) of a N(m, v2)
random variable, say X. Recall that this mgf (with arbitrary argument t) is

MX(t) = E
(
etX

)
= emt+ 1

2v
2t2 .

Hence we obtain
E (Y ) = E

(
eX

)
= MX(1) = em+ 1

2 v
2

.

The variance is obtained by first calculating E(Y 2) = MX(2) and then using

Var(Y ) = E(Y 2)− {E(Y )}2 .

We can plot the density of Y for a range of m and v with the commands
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y=seq ( 0 , 4 , 0 . 1 )
plot (y ,dlnorm(y , 0 , 1 ) , type=” l ” , ylim=c ( 0 , 2 ) )
l ines (y ,dlnorm(y , 1 , sqrt ( 2 ) ) , type=” l ” )
l ines (y ,dlnorm(y , −1 ,1) , type=” l ” )

for which we obtain the Figure 3. Can you match up the distributions and their
pdfs? Note that the pdfs are right skewed. Moreover, we have that

mode(Y ) = em−v2

< med(Y ) = em < E(Y ) = em+ 1
2 v

2

.

0 1 2 3 4

0
.0

0
.5

1
.0

1
.5

2
.0

x

Figure 3: LN(0, 1), LN(1, 2), LN(−1, 1) pdfs
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Finally note that the pdf fY (y) of a Lognormal random variable Y ∼
LN(m, v2) can be obtained from the pdf of a Normal random variable X ∼
N(m, v2) as follows. Start with the cumulative distribution function of Y ,

Pr(Y ≤ y) = Pr(log(Y ) ≤ log(y))

= Pr(X ≤ log(y)) where X ∼ N(m, v2)

= Fx(log(y)) where Fx(·) denotes the cdf of X.

Differentiating with respect to y gives the pdf of Y as

fY (y) = fX(log(y))× 1

y

=
1

y
√
2πv2

exp

{
− (log(y)−m)2

2v2

}
, y > 0

as required.
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2.3 Geometric Brownian Motion

We have considered (generalised) Brownian motion as a model for cash position
but not as a model for stock price. In fact, it would appear that (generalised)
B.M. has two major flaws when used to model stock price:

1. When using B.M. the price of a stock would be a Normal random variable,
and so it could be negative.

2. The assumption that the price difference over an interval of fixed length
has the same Normal distribution no matter what the price at the begin-
ning of the interval doesn’t seem reasonable. For example, many people
do not think that the probability a stock currently selling at 20 would
drop to 15 or less (a loss of 25% or more) in one month should be the
same as the the probability of a stock currently at 10 dropping to 5
or less in one month (a loss of 50% or more). Under generalised B.M.
Pr(Xt < 15|Xs = 20) = Pr(Xt < 5|Xs = 10) = Pr(Xt −Xs = −5).

The geometric Brownian motion model has neither of these flaws. Let us see
why.

Definition 2.3

A continuous time stochastic process {St, t ≥ 0} is called a geometric Brownian
motion (G.B.M.) (with parameters µ and σ2) if each path t → St is a continuous
positive function of t and

(1) S0 > 0 is fixed,
(2) For all 0 ≤ t1 < t2 < ∞ the r.v. St2/St1 is independent of {Su, u ≤ t1},
(3) For all 0 ≤ t1 < t2 < ∞ the r.v. log (St2/St1) is normally distributed with mean(

µ− 1
2σ

2
)
(t2 − t1) and variance σ2(t2 − t1).

Important properties / comments

• When modelling stock price with G.B.M., the logarithm of the stock’s
price is a Normal random variable and so the model does not allow for
negative stock prices.

• Since ratios of prices separated by a fixed length of time have the same
distribution, G.B.M. makes the more reasonable assumption that it is the
percentage change in price (and not the absolute change) whose probabil-
ities do not depend on the present price.

• µ is known as the mean rate of return or expected rate of return and σ2 is
the volatility.

• Let Y = St/Su (for times u < t). Then Y follows the Lognormal distri-
bution (and taking the log of St/Su results in a Normal random variable
with mean (µ− σ2/2)(t− u) and variance σ2(t− u)).

• Using equation (3) with m = (µ − σ2/2)(t − u) and v2 = σ2(t − u), the
expectation of Y is

E(Y ) = eµ(t−u) . (5)
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• Using equation (4), the variance of Y is

Var(Y ) = e2µ(t−u)
(
eσ

2(t−u) − 1
)
. (6)

• The quantity

η =
1

t
log

(
St

S0

)
is known as the continuously compounded rate of return (or simply the
return) realised between times 0 and t, and is so called since rearranging
η gives

St = S0e
ηt .

• G.B.M. (with parameters µ and σ2) is related to the standard B.M. via
the formula

St = Su exp

{(
µ− 1

2
σ2

)
(t− u) + σ (Wt −Wu)

}
u < t, S0 > 0 fixed.

(7)
Rewriting equation (7) with u = 0 gives

St = exp(Xt), Xt = x0 +

(
µ− 1

2
σ2

)
t+ σWt.

That is, Xt is a generalised Brownian motion with initial value x0 =
log(S0), drift a = µ− σ2/2 and diffusion coefficient b2 = σ2.

We can show that equation (7) defines a G.B.M. by checking Definition 2.3.
The continuity of sample paths ofWt gives continuity of sample paths of exp(Xt).
Now note that

1. S0 = exp(x0) which is a fixed, positive value.

2. For all times 0 ≤ t0 < t1 < t2 < ∞,

St1

St0

= exp{(µ− 0.5σ2)(t1 − t0) + σ(Wt1 −Wt0)}

and
St2

St1

= exp{(µ− 0.5σ2)(t2 − t1) + σ(Wt2 −Wt1)}.

Now, independence of the Brownian increments on the RHS gives inde-
pendence of the ratios on the LHS.

3. For all times 0 ≤ t0 < t1 < ∞,

log

(
St1

St0

)
= (µ− 0.5σ2)(t1 − t0) + σ(Wt1 −Wt0)

which, using Wt1 −Wt0 ∼ N(0, t1 − t0) gives

log

(
St1

St0

)
∼ N

(
(µ− 0.5σ2)(t1 − t0) , σ

2(t1 − t0)
)

as required.
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Example 2.3

Suppose that the price of a particular stock follows a G.B.M. {St, t ≥ 0} with
mean rate of return µ = 0.01 per year and volatility σ2 = 0.04 per year. If the
initial price of stock is 100, find:

(a) E(S10);

(b) Pr(S10 > 100).

Solution

(a) We require

E(S10) = E

(
S10

S0
× S0

)
= S0E(Y )

where Y = S10/S0 follows a log-Normal distribution and so we can apply
equation (5). We obtain

E(S10) = 100eµ(10−0) = 100e0.1 .

Note that in general,
E(St) = S0e

µt

so the expected price grows like a fixed-income security with continuously
compounded interest rate µ. This is why we call µ the rate of return.

(b) We have

Pr(S10 > 100) = Pr

(
S10

S0
>

100

S0

)
= Pr

(
log

(
S10

S0

)
> log(1)

)
= Pr(X > 0) where X ∼ N

(
(µ− 0.5σ2)10 , σ210

)
≡ N(−0.1, 0.4)

Hence we obtain

Pr(S10 > 100) = Pr

(
Z >

0.1√
0.4

)
where Z ∼ N(0, 1)

= 0.437

Example 2.4

Consider a stock with an initial price of 40, an expected return of 16% per
annum, and a volatility of 4% per annum. Calculate a 95% confidence interval
for the stock price in 6 months time, S0.5.
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Solution

Identify µ = 0.16 and σ = 0.2. Now, we know that

log

(
S0.5

S0

)
∼ N

(
(0.16− 0.22/2)× 0.5, 0.22 × 0.5

)
⇒ log

(
S0.5

S0

)
∼ N(0.07, 0.02)

Hence, with 95% confidence,

0.07− 1.96×
√
0.02 < log

(
S0.5

S0

)
< 0.07 + 1.96×

√
0.02

⇒ log(40)− 0.207 < log(S0.5) < log(40) + 0.347

⇒ 32.52 < S0.5 < 56.59

2.3.1 Simulating/Visualising Geometric Brownian Motion

Just as with Brownian motion, we can simulate a skeleton of a sample path
of geometric Brownian motion by discretising time and using equation (7). As
before, split [0, T ] into n + 1 equidistant points 0 = t0 < t1 < . . . tn = T . Let
ti+1 − ti = ∆t = T/n. Perform the following sequence of steps:-

1. Initialise S0 = s0. Put i := 1

2. Simulate Wti −Wti−1 ∼ N(0,∆t)

3. Put Sti = sti−1
exp

{(
µ− 1

2σ
2
)
∆t+ σ

(
Wti −Wti−1

)}
4. If ti = T , stop otherwise put i := i+ 1 and go to step 2.

The following R function takes as arguments T , ∆t, s0, µ and σ, and returns a
skeleton path of a generalised B.M.

gbm=function (T=20,dt=0.01 , s0=40,mu=0.1 , s i g =0.2)
{
n=T/dt
simvec=vector ( ”numeric ” , l en=n+1)
simvec [1 ]= s0
for ( i in 2 : ( n+1))
{
simvec [ i ]= simvec [ i −1]∗exp ( (mu−0.5∗ s i g∗ s i g )∗dt+s i g∗rnorm(1 , 0 , sqrt (dt ) ) )

}
simvec

}

Plot the path with

plot(ts(gbm(),start=0,deltat=0.01))

Figure 4 shows two simulated realisations of a geometric B.M.
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Figure 4: 2 simulated realisations of a geometric B.M. with s0 = 40, µ = 0.1
and σ = 0.2.

2.3.2 G.B.M. as a limit of simpler models (not examinable)

Partition the interval [0, T ] into n equal subintervals of size ∆t = T/n and
consider a Binomial model for the price of a stock. That is, every ∆t time
units, the price either goes up by a factor u with probability p or goes down by
a factor of d with probability 1− p. Fix µ and σ and set

u = eσ
√
∆t, d = e−σ

√
∆t ,

p =
1

2

(
1 +

(µ
σ
− σ

2

)√
∆t

)
.

Now define a random variable Yi taking the value 1 if the price goes up at time
i∆t and 0 if the price goes down. Plainly, the number of times the price goes
up (in the first n time increments) is

∑n
i=1 Yi and the number of times it goes

down is n−
∑n

i=1 Yi. Hence, the stock price at time T can be expressed as

ST = S0u
∑n

i=1 Yidn−
∑n

i=1 Yi

= S0d
n
(u
d

)∑n
i=1 Yi

.

Dividing by S0 and taking logarithms gives

log

(
ST

S0

)
= n log(d) + log

(u
d

) n∑
i=1

Yi

=
−Tσ√
∆t

+ 2σ
√
∆t

T/∆t∑
i=1

Yi . (8)

after using n = T/∆t and the definitions of u and d. Now, taking smaller
and smaller intervals, ∆t → 0, is equivalent to taking n → ∞ and hence by
the central limit theorem,

∑n
i=1 Yi becomes increasingly Normal. This implies

that ln(ST /S0) in equation (8) becomes a Normal random variable. Taking
expectations

E

[
log

(
ST

S0

)]
=

−Tσ√
∆t

+ 2σ
√
∆t

T/∆t∑
i=1

E(Yi)
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=
−Tσ√
∆t

+ 2σ
√
∆t

T

∆t
p

=
−Tσ√
∆t

+
Tσ√
∆t

(
1 +

(µ
σ
− σ

2

)√
∆t

)
=

(
µ− σ2

2

)
T .

For the variance, we obtain

Var

[
log

(
ST

S0

)]
= 4σ2∆t

T/∆t∑
i=1

Var(Yi)

= 4σ2Tp(1− p)

≈ σ2T since p ≈ 1/2 for small ∆t .

Hence, we have shown that taking a simple Binomial model (of stock price) with
smaller and smaller time periods results in the geometric Brownian motion. We
can also verify this empirically. Consider the following R function that takes as
arguments S0, µ, σ, T and ∆t, and returns a simulated value of log(ST /S0), by
simulating from the Binomial model.

bin=function (T=2,dt=0.1 , s0=40,mu=0.1 , s i g =0.2)
{
n=T/dt
sdt=sqrt (dt )
u=exp( s i g∗ sdt )
d=exp(− s i g∗ sdt )
p=0.5∗(1+(mu/ s ig−s i g/2)∗ sdt )
s=s0
k=rbinom (1 , n , p )
s=s∗uˆ(k )∗dˆ(n−k )
log ( s/s0 )

}
Consider an example with T = 2, µ = 0.1 and σ = 0.2. For a Binomial model
with ’small’ time intervals, we should expect the distribution of ln(S2/S0) to be
(approximately) Normal with mean (µ − 0.5σ2)T = 0.16 and variance σ2T =
0.08. The following function generates a predetermined number of simulated
values of log(S2/S0),

bin2=function (T=2,dt=0.1 , s0=40,mu=0.1 , s i g =0.2 , sim=1000)
{
simvec=vector ( ”numeric ” , l en=sim )
for ( i in 1 : sim ){
simvec [ i ]=bin (T,dt , s0 ,mu, s i g )

}
simvec

}
and we can then plot a histogram of these simulated values with

hist(bin2(),freq=F)

Figure 5 provides 4 such histograms generated with decreasing ∆t.
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Figure 5: Histograms of 1000 simulations of log(S2/S0) from the binomial model
with µ = 0.1, σ = 0.2 and time intervals of (a) ∆t = 0.2, (b) ∆t = 0.1, (c)
∆t = 0.01 and (d) ∆t = 0.005. Plot (d) includes an overlay of the N(0.16, 0.08)
density.

2.3.3 Black-Scholes Pricing

In the final part of this Section, we derive the well known Black-Scholes formula,
which gives (under the assumption that the price of a security evolves according
to a G.B.M.) the unique no-arbitrage cost of a call option. The theory was
developed in the early 1970s and its importance recognised in 1997, with the
award of a Nobel prize for economics.

Consider an ECC with payoff g(ST ) at time T . The no arbitrage fair price
of this ECC is

e−rTE {g(ST )}

where E(·) should be an appropriate risk-neutral expectation. That is

“the discounted expected payoff at time T”.

The motivation for this form of fair price is probably best understood in the
context of gambling. It is helpful to imagine the payoff of the ECC as your total
fortune at time T after gambling in a “fair” game. One might then expect the
fair price for entering the game to be the expected payoff at time T . To take
into account the money market, we multiply by the discount factor, e−rT .

The simplest ECC has payoff ST at time T . The fair price is therefore

e−rTE(ST ) = S0 (9)

since for no-arbitrage, the fair price of the ECC must coincide with its value at
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time 0. Under assumption of GBM,

E(ST ) = S0e
µT

and we therefore must take µ = r for (9) to be satisfied. A G.B.M. with µ = r
is known as risk neutral G.B.M. Under the risk-neutral G.B.M., log(ST /S0) is
Normal with mean (r − σ2/2)T and variance σ2T .

Hence, the unique no-arbitrage cost, C0, of a European call option with
maturity T and strike price K is the discounted expected payoff at time T ,

C0 = e−rTE
[
(ST −K)+

]
= e−rTE

[
(S0e

W −K)+
]

where W is a Normal random variable with mean (r − σ2/2)T and variance
σ2T . This equation can be explicitly evaluated to give the Black-Scholes option
pricing formula.

Result 2.1 (Black-Scholes formula)

Under the assumption of R-N G.B.M., the fair price of a European call option
with maturity T and strike price K is

C0 = S0Φ(ω)−Ke−rTΦ(ω − σ
√
T ), where ω =

rT + σ2T/2− log(K/S0)

σ
√
T

(10)
and Φ(·) is the standard Normal distribution function. Recall that log is base e.

Derivation of the Black-Scholes price (not examinable)

Let I be an indicator variable taking the value 1 if ST > K and 0 otherwise.
By definition of the fair price C0 of the European call option,

C0 = e−rTE
(
[ST −K]+

)
= e−rTE (max[0, ST −K])

= e−rTE (I × [ST −K])

where I is the indicator variable defined above. Hence we obtain

C0 = e−rTE [I × ST ]−Ke−rTE [I] .

We now calculate the expectation of the indicator variable,

E [I] = 1× Pr(ST > K) + 0× Pr(ST ≤ K)

= Pr(ST > K)

= Pr

(
log

[
ST

S0

]
> log

[
K

S0

])
where log

[
ST

S0

]
∼ N([r − σ2/2]T, σ2T )

= Pr

(
Z >

log(K/S0)− [r − σ2/2]T

σ
√
T

)
where Z ∼ N(0, 1)

= Pr

(
Z <

[r − σ2/2]T − log(K/S0)

σ
√
T

)
.

Now note that
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ω − σ
√
T =

rT + σ2T/2− log(K/S0)

σ
√
T

− σ2T

σ
√
T

=
[r − σ2/2]T − log(K/S0)

σ
√
T

.

Hence,

E [I] = Φ(ω − σ
√
T )where Φ(·) denotes the CDF of a standard Normal random variable.

Now we just need E [I × ST ]. We start by writing ST as

ST = S0 exp
{
(r − σ2/2)T + σ

√
TZ

}
where Z ∼ N(0, 1). We can then write our indicator variable as

I =

{
1, ST > K
0, otherwise

=

{
1, Z > σ

√
T − ω

0, otherwise

Hence

E [I × ST ] =

∫ ∞

σ
√
T−ω

S0 exp
{
(r − σ2/2)T + σ

√
Tz

}
fZ(z)dz

=

∫ ∞

σ
√
T−ω

S0 exp
{
(r − σ2/2)T + σ

√
Tz

} 1√
2π

e−z2/2dz

=
1√
2π

S0 exp
{
(r − σ2/2)T

}∫ ∞

σ
√
T−ω

exp
{
−(z2 − 2σ

√
Tz)/2

}
dz

=
1√
2π

S0e
rT

∫ ∞

σ
√
T−ω

exp
{
−(z − σ

√
T )2/2

}
dz (completing the square)

= S0e
rT 1√

2π

∫ ∞

−ω

e−y2/2dy by letting y = z − σ
√
T

= S0e
rTPr(Z > −ω)

= S0e
rTΦ(ω) (by symmetry of the Normal pdf).

Hence we obtain

C0 = e−rTE [I × ST ]−Ke−rTE [I]

= e−rTS0e
rTΦ(ω)−Ke−rTΦ(ω − σ

√
T )

= S0Φ(ω)−Ke−rTΦ(ω − σ
√
T )

as required.

Comments

• Let C0 and P0 be the respective no-arbitrage costs of a European call and
put option each with strike price K and maturity T . It follows from the
put-call option parity formula (see Section 1) that P0 is given by

P0 = C0 +Ke−rT − S0 . (11)

• Note that the no-arbitrage cost of the option depends on the underlying
Brownian motion only through its volatility σ2 (since r is known). In
other words, to find the fair price of an option, we need only estimate σ2.
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Example 2.5

Consider an option with strike price K = 29 (in pounds) and maturity T = 4
months. Suppose that the current price of stock is S0 = 30, the risk free interest
rate is 5% and the volatility is 6.25% per annum.

(a) What is the price of the option if it is a European call?

(b) What is the price of the option if it is a European put?

Solution

(a) Identify T = 1/3, r = 0.05, σ2 = 0.0625, σ = 0.25. Let C0 denote the
price of the European call. Define P0 similarly. Using the Black-Scholes
formula (10) we have

ω = 0.4225

⇒ C0 = 30Φ(0.4225)− 29e−0.05×1/3Φ(0.4225− 0.25
√
1/3)

= 2.53 .

Hence the no-arbitrage price of the European call is £2.53.

(b) Using the put-call parity formula given by (11),

P0 = 2.53 + 29e−0.05×1/3 − 30

= 1.05 .

Hence the no-arbitrage price the European put is £1.05.

Test Yourself Test yourself:
https://numbas.mathcentre.ac.uk/question/145108/black-scholes-pricing/

embed/?token=e885dfad-6904-44b3-8d76-3e7c546ab945

Properties of the Black-Scholes price

We have the following properties of the Black-Scholes price C0:

1. C0 is an increasing function of S0. This means that if the other four
variables (T,K, σ, r) remain the same, then the no-arbitrage cost of the
option is an increasing function of the security’s initial price. Showing this
to be the case will be left as an exercise.

2. C0 is a decreasing function of K. Showing this to be the case will be left
as an exercise.

3. C0 is increasing in T . A mathematical argument can be given but is
beyond the scope of the course.

4. C0 is increasing in σ. This at first might seem intuitive since the option
holder will benefit from large prices at maturity time, while any additional
price decrease below the strike price will not cause any additional loss.
However, we must note that increasing σ also results in a decrease in the
mean of an asset’s price (under GBM). Nevertheless the result is true but
a mathematical proof is beyond the scope of the course.

5. C0 is increasing in r. Showing this to be the case will be left as an exercise.
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